References
- Sejun Kim, Jiyoung Yu, Chongah Gwon, Hyungjoon Kim, "Idle Stop & Go System Development for Automatic-Transmission Vehicle", KSAE pp. 647-652, 2011.
- Jiyong Yu, Minyoung Jung, Junyong Lee, Myungsik Choi, Kwangyein Kim, "A Development of More Cost Effective AT ISG System", KSAE pp. 121-126, 2012.
- Jaewoo Jung, Soono Kwon, Jungpyo Hong, Jiyoung Lee, Yangsu Lim, Yoon Hur, "The Optimal Design and Characteristic Analysis of Distributed and Concentrated Winding type of Interior Permanent Magnet Moter for ISG", KSAE06-F0255, pp. 1634-1640. 2006.
- Chonghyeon Cheong, Yunhui Park, "Simple Vehicle Modeling for Fuel Economy Effect of Auto-Stop", KSAE 2009 Annual Conference & Exhibition, pp. 532-536, 2011.
- Chih-Hsien Yu, Hao-Yuan Tseng, "Development of an Automatic Idling Stop and Go Control Apparatus for an EFI Scooter", Journal of Circuits, Systems, and Computers Vol.23, No. 4 1450044 (28 pages), 2014. https://doi.org/10.1142/S0218126614500443
- B. Drenchev, M. Dimitrov, V. Boev, Absorptive glass mat separator surface modification and its infilence on the heat generation in valve-regulated lead-acid battery, J. Power Sources, 280, p.p 66-73 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.090
- V. Naidenov, D. Pavlov, M. Cherneva, Three-layered absorptive glass mat separator with membrane for application in valve-regulated lead-acid batteries, J. Power Sources, 192, p.p 730-735 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.092
- Hammouche Abderrezak, Thele Marc, Sauer Dirk Uwa, Analysis of gassing processes in a VRLA/spiral wound battery, J. Power Sources, 158, p.p 987-990 (2009).
- A. Kirchev, D. Pavlov, B. Monahov, Gas-diffusion approach to oxygen recombination in lead-acid batteries, J. Power Sources, 113, p.p 245-254 (2003). https://doi.org/10.1016/S0378-7753(02)00520-7
- Jeong Soon-Wook, Ku Bon-Keun, A study on the plate for deep discharge in lead acid battery, J. of Korean Oil Chemists' Soc., 31, p.p 197-202 (2014). https://doi.org/10.12925/jkocs.2014.31.2.197
- Jeong Soon-Wook, Ku Bon-Keun, Effects of 4BS Crystal Size on the Positive Plate Behavior in Lead Acid Battery, J. of Korean Oil Chemists' Soc., 26, p.p 335-340 (2009).
- R. Wagner, Failure modes of valveregulated lead/acid batteries in different applications, 4th European lead battery conference, p.p 153-162 (1995).
- S. Laruelle, Grugeon-Dewaele, L. Torcheux, A. Delahaye-Vidal, The Curing Reaction Study of the Active Material in the Lead Acid Battery, J. Power Sources, 77, p.p 83-89 (1999). https://doi.org/10.1016/S0378-7753(98)00187-6
- Jenn-shing Chen, L. F. Wang, Effect of Curing on Positive-Plate Behaviour in Electric Scotter Lead/Acid Cells, J. Power Sources, 70, p.p 269-275 (1998). https://doi.org/10.1016/S0378-7753(97)02657-8
- Jeong Soon-Wook, Ku Bon-Keun, Effects of 4BS Crystal Size on the Positive Plate Behavior in Lead Acid Battery, J. of Korean Oil Chemists' Soc., 26, p.p 335-340 (2009).
- D. Pavlov, Lead/Acid Battery Positive Plates Manufactured from 4PbO.PbSO4 Pastes Prepared from Leady Oxide and Red Lead, J. Power Sources, 31, p.p 189-201 (1990). https://doi.org/10.1016/0378-7753(90)80071-K
- Ku Bon-Keun, Jeong Soon-Wook, Effects of Curing Conditions on the Chemical Compositions of Positive Plate for Lead Acid Battery Plates, J. of Korean Oil Chemists' Soc., 23, p.p 347-354 (2006).
Cited by
- A Study on the Mixing method and Mixing Temperature of Positive Paste to Improve the Capacity of the Lead-Acid Batteries vol.33, pp.3, 2016, https://doi.org/10.12925/jkocs.2016.33.3.568