• Title/Summary/Keyword: VR1 agonist

Search Result 3, Processing Time 0.026 seconds

Design, Synthesis and Biological Activities of Novel Vanilloid Receptor Antagonists

  • Lee, Bo-Young;Suh, Young-Ger;Lee, Yong-Sil;Min, Kyung-Hoon;Kim, Jin-Kwan;Seung, Ho-Sun;Park, Young-Ho
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.244.1-244.1
    • /
    • 2003
  • Advances in understanding of pain and analgesia have been made. Over the past few years, we have designed and synthesized a series of VR agonists, based on the structures of 12-HPETE and capsaicin. the natural VR agonist. But for the development of analgesic drugs, these synthetic VR agonists had problems like burning sensation. hypothermia. etc. So our recent studoes have focused on designs and syntheses of VR antagonists based on the structure of capsaicin(natural VR agonist), and capsazepine(synthetic VR antagonist). (omitted)

  • PDF

Design. Synthesis and Biological Activities of Novel Vanilloid Receptor (VR) Agonists and Antagonists

  • Suh, Young-Ger;Lee, Bo-Young;Kim, Jin-Kwan;Min, Kyung-Hoon;Park, Ok-Hui;Lee, Young-Sil;Oh, Uh-Taek;Park, Young-Ho;Joo, Yung-Hyup;Choi, Jin-Kyu;Jeong, Yeon-Su;Koh, Hyun-Ju
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.355.1-355.1
    • /
    • 2002
  • Recently. we have reported that several lipoxygenases products directly activate the capsaicin-activated channel as intracellular messengers in neuron. In particular, 12-(S)-hydroperoxyeicosatetraenoic acid turned out to be the most potent endogenous VR activator. This finding prompted us to search for a novel non-vaniloid VR agonists and antagonists. We have designed and synthesized a series of non-vanilloid VR binding ligands based on the structural simllarity between 12-HPETE and capsaicin, the natural VR agonist. Our recent studies on the development of selective vanilloid receptor agonists and antagonists will be presented.

  • PDF

Vanilloid Receptor 1 Agonists, Capsaicin and Resiniferatoxin, Enhance MHC Class I-restricted Viral Antigen Presentation in Virus-infected Dendritic Cells

  • Young-Hee Lee;Sun-A Im;Ji-Wan Kim;Chong-Kil Lee
    • IMMUNE NETWORK
    • /
    • v.16 no.4
    • /
    • pp.233-241
    • /
    • 2016
  • DCs, like the sensory neurons, express vanilloid receptor 1 (VR1). Here we demonstrate that the VR1 agonists, capsaicin (CP) and resiniferatoxin (RTX), enhance antiviral CTL responses by increasing MHC class I-restricted viral antigen presentation in dendritic cells (DCs). Bone marrow-derived DCs (BM-DCs) were infected with a recombinant vaccinia virus (VV) expressing OVA (VV-OVA), and then treated with CP or RTX. Both CP and RTX increased MHC class I-restricted presentation of virus-encoded endogenous OVA in BM-DCs. Oral administration of CP or RTX significantly increased MHC class I-restricted OVA presentation by splenic and lymph node DCs in VV-OVA-infected mice, as assessed by directly measuring OVA peptide SIINFEKL-Kb complexes on the cell surface and by performing functional assays using OVA-specific CD8 T cells. Accordingly, oral administration of CP or RTX elicited potent OVA-specific CTL activity in VV-OVA-infected mice. The results from this study demonstrate that VR1 agonists enhance anti-viral CTL responses, as well as a neuro-immune connection in anti-viral immune responses.