• Title/Summary/Keyword: VR Technology

Search Result 782, Processing Time 0.025 seconds

A Case Study on Design Verification for Supportability of Weapon System Based on Virtual Reality (가상현실 기반의 무기체계 군수지원성 설계 검증 방안 : 사례연구)

  • Kim, Heewook;Lee, Hakpyo;Lee, Seungyong;Kang, Sungoug;Heo, Gilhwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.76-83
    • /
    • 2016
  • State-of-the-art design S/W and other 3D systems are used for design and development of weapon system. It is possible to detect problems of design through 3D or VR(Virtual Reality) in advance, and then reduce the development cost by finding solutions before prototype production. Therefore, we can increase efficiency for supportability of weapon system. In this study, we first propose a design verification procedure. Then we verify design of weapon system, underwater guided weapon, as a case study. Finally, we suggest alternatives for underwater guided weapon under development with DMS(Digital Maintenance System) and ICIDO from the point of view of ILS(Integrated Logistics Support). Developed S/W, DMS, draws maintenance procedures for components. Commercial S/W, ICIDO, verifies cable maintainability.

A Sound Interpolation Method Using Deep Neural Network for Virtual Reality Sound (가상현실 음향을 위한 심층신경망 기반 사운드 보간 기법)

  • Choi, Jaegyu;Choi, Seung Ho
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.227-233
    • /
    • 2019
  • In this paper, we propose a deep neural network-based sound interpolation method for realizing virtual reality sound. Through this method, sound between two points is generated by using acoustic signals obtained from two points. Sound interpolation can be performed by statistical methods such as arithmetic mean or geometric mean, but this is insufficient to reflect actual nonlinear acoustic characteristics. In order to solve this problem, in this study, the sound interpolation is performed by training the deep neural network based on the acoustic signals of the two points and the target point, and the experimental results show that the deep neural network-based sound interpolation method is superior to the statistical methods.

Smart Tourism Information System and IoT Data Collection Devices for Location-based Tourism and Tourist Safety Services

  • Ko, Tae-Seung;Kim, Byeong-Joo;Jwa, Jeong-Woo
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.310-316
    • /
    • 2022
  • The smart tourism service provides services such as travel planning and tour guides to tourists using key technologies of the 4th industrial revolution, such as the Internet of Things, communication infrastructure, big data, artificial intelligence, AR/VR, and drones. We are developing smart tourism services such as recommended travel products, my travel itinerary, tourism information, and chatbots for tourists through the smart tourism app. In this paper, we develop a smart tourism service system that provides real-time location-based tourism information and weather information to tourists. The smart tourism service system consists of a smart tourism app, a smart tourism information system, and an IoT data collection device. The smart tourism information system receives weather information from the IoT data collection device installed in the tourist destination. The location-based smart tourism service is provided as a smart tourism app in the smart tourism information system according to the Beacon's UUID in the IoT data collection device. The smart tourism information system stores the Beacon's UUIDs received from tourists and provides a safe hiking service for tourists.

Investigation of Trend in Virtual Reality-based Workplace Convergence Research: Using Pathfinder Network and Parallel Neighbor Clustering Methodology (가상현실 기반 업무공간 융복합 분야 연구 동향 분석 : 패스파인더 네트워크와 병렬 최근접 이웃 클러스터링 방법론 활용)

  • Ha, Jae Been;Kang, Ju Young
    • The Journal of Information Systems
    • /
    • v.31 no.2
    • /
    • pp.19-43
    • /
    • 2022
  • Purpose Due to the COVID-19 pandemic, many companies are building virtual workplaces based on virtual reality technology. Through this study, we intend to identify the trend of convergence and convergence research between virtual reality technology and work space, and suggest future promising fields based on this. Design/methodology/approach For this purpose, 12,250 bibliographic data of research papers related to Virtual Reality (VR) and Workplace were collected from Scopus from 1982 to 2021. The bibliographic data of the collected papers were analyzed using Text Mining and Pathfinder Network, Parallel Neighbor Clustering, Nearest Neighbor Centrality, and Triangle Betweenness Centrality. Through this, the relationship between keywords by period was identified, and network analysis and visualization work were performed for virtual reality-based workplace research. Findings Through this study, it is expected that the main keyword knowledge structure flow of virtual reality-based workplace convergence research can be identified, and the relationship between keywords can be identified to provide a major measure for designing directions in subsequent studies.

Framework for Reconstructing 2D Data Imported from Mobile Devices into 3D Models

  • Shin, WooSung;Min, JaeEun;Han, WooRi;Kim, YoungSeop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.6-9
    • /
    • 2021
  • The 3D industry is drawing attention for its applications in various markets, including architecture, media, VR/AR, metaverse, imperial broadcast, and etc.. The current feature of the architecture we are introducing is to make 3D models more easily created and modified than conventional ones. Existing methods for generating 3D models mainly obtain values using specialized equipment such as RGB-D cameras and Lidar cameras, through which 3D models are constructed and used. This requires the purchase of equipment and allows the generated 3D model to be verified by the computer. However, our framework allows users to collect data in an easier and cheaper manner using cell phone cameras instead of specialized equipment, and uses 2D data to proceed with 3D modeling on the server and output it to cell phone application screens. This gives users a more accessible environment. In addition, in the 3D modeling process, object classification is attempted through deep learning without user intervention, and mesh and texture suitable for the object can be applied to obtain a lively 3D model. It also allows users to modify mesh and texture through requests, allowing them to obtain sophisticated 3D models.

Real-time Markerless Facial Motion Capture of Personalized 3D Real Human Research

  • Hou, Zheng-Dong;Kim, Ki-Hong;Lee, David-Junesok;Zhang, Gao-He
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.129-135
    • /
    • 2022
  • Real human digital models appear more and more frequently in VR/AR application scenarios, in which real-time markerless face capture animation of personalized virtual human faces is an important research topic. The traditional way to achieve personalized real human facial animation requires multiple mature animation staff, and in practice, the complex process and difficult technology may bring obstacles to inexperienced users. This paper proposes a new process to solve this kind of work, which has the advantages of low cost and less time than the traditional production method. For the personalized real human face model obtained by 3D reconstruction technology, first, use R3ds Wrap to topology the model, then use Avatary to make 52 Blend-Shape model files suitable for AR-Kit, and finally realize real-time markerless face capture 3D real human on the UE4 platform facial motion capture, this study makes rational use of the advantages of software and proposes a more efficient workflow for real-time markerless facial motion capture of personalized 3D real human models, The process ideas proposed in this paper can be helpful for other scholars who study this kind of work.

Surface Quality of Products according to the Material and Coating Condition of the Forming Tool in Incremental Sheet Forming (점진성형공구 코팅처리 및 소재에 따른 성형품 표면품질 분석)

  • H. W. Youn;N. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.360-366
    • /
    • 2023
  • This study is concerned with the surface quality of products according to the material and coating condition of the forming tool in incremental sheet forming. Three forming tools, SKD11 with and without diamond-like-coating (DLC) and polymer tool tip, were used to form conical and pyramidal geometries to take into account the influence of friction between the forming tool and the sheet on the surface quality including geometric accuracy of deformed samples. Each test was performed using SUS304 with a thickness of 0.4 mm according to different incremental depths per lap of 0.5 mm, 1.0 mm, and 1.5 mm for the contour tool path, considering the increase in normal force which is associated with the frictional behavior during local deformation. The surface quality was then investigated through surface roughness measured with KEYENCE VR-6000 and relative strain distribution including deformed shape analyzed with ARGUS which is a non-contact optical strain measurement system. Differences between 3D CAD surfaces and captured geometry from experiments were evaluated to compare the effect of friction on geometric accuracy. From comparisons of experimental results, it was revealed that the polymer-based tool tip can improve surface quality and geometric accuracy by reducing the undesired material flow due to local friction in the increment sheet forming process.

A Research of User Experience on Multi-Modal Interactive Digital Art

  • Qianqian Jiang;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.80-85
    • /
    • 2024
  • The concept of single-modal digital art originated in the 20th century and has evolved through three key stages. Over time, digital art has transformed into multi-modal interaction, representing a new era in art forms. Based on multi-modal theory, this paper aims to explore the characteristics of interactive digital art in innovative art forms and its impact on user experience. Through an analysis of practical application of multi-modal interactive digital art, this study summarises the impact of creative models of digital art on the physical and mental aspects of user experience. In creating audio-visual-based art, multi-modal digital art should seamlessly incorporate sensory elements and leverage computer image processing technology. Focusing on user perception, emotional expression, and cultural communication, it strives to establish an immersive environment with user experience at its core. Future research, particularly with emerging technologies like Artificial Intelligence(AR) and Virtual Reality(VR), should not merely prioritize technology but aim for meaningful interaction. Through multi-modal interaction, digital art is poised to continually innovate, offering new possibilities and expanding the realm of interactive digital art.

A Study on the Analysis and Verification of Evaluation system for the Usability Evaluation of Purpose-Based XR Devices (목적 기반 XR 디바이스의 사용성 평가를 위한 평가체계 분석 및 검증 연구)

  • Young Woo Cha;Gi Hyun Lee;Chang Kee Lee;Sang Bong Lee;Ohung Kwon;Chang Gyu Lee;Joo Yeoun Lee;JungMin Yun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.spc1
    • /
    • pp.56-64
    • /
    • 2024
  • This study aims to compare and evaluate the usability of domestic and overseas XR devices. With the recent release of 'Apple Vision Pro', interest in the XR field is increasing rapidly. XR devices are being used in various fields such as defense, medical care, education, and entertainment, but the evaluation system for evaluating usability is still insufficient. Therefore, this study aims to derive improvements in domestic equipment through comparative evaluation of usability for two HMD-type devices and one glasses-type device that are released. In order to conduct the study, 20 participants in their 20s to 30s who were interested in XR devices and had no visual sensory organ-related disabilities were evaluated by wearing VR equipment. As a quantitative evaluation, electromyography through an EMG sensor and the device and body temperature of the device through a thermal imaging camera were measured. As a qualitative evaluation, the safety of wearing, ease of wearing, comfort of wearing, and satisfaction of wearing were evaluated. As a result of comparing the usability of the devices based on the results, it was confirmed that domestic HMD-type device needs improvement in the strap part.

Institutional and Technical Improvement Measures to Facilitate the Use of Smart Construction Safety Technology (스마트 건설안전 기술 도입 촉진을 위한 제도적⋅기술적 개선 방안에 관한 연구)

  • Jaehyun Jeong;Sang I. Park;Hyungtaek Sim;Yuhee Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.41-54
    • /
    • 2024
  • Efforts to reduce on-site safety incidents have expanded, leading to active research in this domain. However, a systematic analysis to improve the utility of technology is lacking. In this study, we conducted a survey on the various institutional and technical improvement measures to promote the application of smart construction safety technology over three years after the implementation of the "Smart Safety Equipment Support Project." The results showed that financial constraint was the primary obstacle in the adoption of this innovation. Fostering a flexible environment in the utilization of management fees and financial support of projects was determined to aid in the extensive application of the technology. Ensuring cost efficiency and user-friendliness were principally necessary for technical enhancements in the smart construction safety technology. Technologies, such as VR/AR safety education, real-time location tracking, wearable devices, and innovation on streamlining safety-related work efficiency, had been anticipated to contribute to on-site safety. Operating a smart safety control center was expected to be beneficial in the systematic securing of data and reduction of safety blind spots. Effective methods had been suggested to overcome the barriers that hindered the development and application of smart construction safety technology. This study facilitates in the technological improvements in this field.