• Title/Summary/Keyword: VQ Codebook

Search Result 84, Processing Time 0.022 seconds

백터 양자화의 고속 부호화 알고리즘 (Fast VQ Encoding Algorithm)

  • 채종길;황금찬
    • 한국통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.685-690
    • /
    • 1994
  • 벡터 양자화의 부호화에서 입력벡터에 가장 잘 정합되는 코드벡터를 탐색하는 과정에서 발생하는 계산의 복잡도는 코드북의 크기에 비례하여 지수직으로 증가하고 실질적으로 응용을 제한한다. 본 논문에서는 정합 가능성이 없는 코드벡터에 대한 왜곡의 계산을 제거하기 위한 조건의 시작 벡터로서 참조 벡터를 사용하는 단순, 고속의 효율적인 벡터 양자화의 부호화 알고리즘을 제안하였다. 이는 입력벡터에 정합 기능성을 갖는 참조 벡터를 선택하고 코드 벡터에 대한 왜곡의 계산을 제거하기 위한 조건을 결합하는 것이다. 제한된 방법은 전탐색 벡터 양자화에 비하여 단지 10~15%의 수학적 연산을 필요로 한다. 그리고 덧셈과 비교 연산의 수는 크게 줄어들지 않지만 곱셈은 벡터 양자화의 여러 고속부호화 방법의 70~80%까지 들었다.

  • PDF

신경망을 이용한 저비트율 영상코딩 (Low Sit Rate Image Coding using Neural Network)

  • 정연길;최승규;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.579-582
    • /
    • 2001
  • 벡터변형은 벡터 양자화(VQ)와 부호화를 통합한 새로운 방법이다. 최근까지 부호화에 적용된 코드북 생성은 LBG 알고리즘이었으나 신경회로망을 기반으로 한 자기생성 특성맵(SOFM: Self Organizing Feature Map)의 장점을 이용하면 시스템의 성능을 개선할 수 있다는 점에 착안하였다. 본 논문에서는 SOFM 알고리즘을 적용한 VTC(Vector Transformation coding)코드북 생성과 LBG 알고리즘의 부호화률에 대한 결과를 비교하여 분석하였다. 벡터 양자화의 문제점은 계산의 복잡성과 코드북 생성에 있으므로 본 연구에서는 이 문제의 해결을 위해 신경망 접근법을 제안한다.

  • PDF

DMS 모델과 이중 스펙트럼 특징을 이용한 HMM에 의한 음성 인식 (HMM-based Speech Recognition using DMS Model and Double Spectral Feature)

  • 안태옥
    • 한국산학기술학회논문지
    • /
    • 제7권4호
    • /
    • pp.649-655
    • /
    • 2006
  • 본 논문은 화자 독립의 음성인식을 위한 연구로써, DMS 모델에 의한 DMSVQ(Dynamic Multi-Section Vector Quantization) 코드북과 이중 스펙트럼 특징을 이용한 HMM(Hidden Markov Model) 음성인식 방법을 제안한다. 정적 스펙트럼 특징으로서는 LPC ?S스트럼 계수를 이용하였고, 동적 스펙트럼 특징으로는 LPC ?S스트럼의 회귀계수를 사용하였다. 이들 두개의 스펙트럼 특징들을 각각 VQ 코드북으로 양자화되고, DMS 모델을 이용한 HMM은 입력으로써 정적 스펙트럼 특징과 동적 스펙트럼 특징을 받아드림으로써 모델링된다. 제안된 방법에 의한 인식 실험은 기존의 다양한 인식 방법에 의한 인식 실험들과 비교를 위해 동일한 데이터와 조건 하에서 수행하였다. 실험 결과, 본 연구에서 제안한 방법이 기존의 방법들보다 우수한 방법임을 입증하였다.

  • PDF

DHMM을 이용한 한국어 음성 인식 (Korean Speech Recognition using DHMM)

  • 안태옥;이강성;유형근;이형준;조형제;변용규;김순협
    • 한국음향학회지
    • /
    • 제10권1호
    • /
    • pp.52-60
    • /
    • 1991
  • 본 연구는 스펙트럼의 동적 특징을 한 파라메타로 하는 DHMM(Dynamic Hidden Markov Model)을 이용한 단독어인식에 관한 것으로 정적 스펙트럼 특징뿐 아니라 동적 스펙트럼 특징을 평가할 수 있는 DHMM에 근거한 음성 인식 실험을 논의 한다. 정적특징으로는 LPC cepstrum 계수를 이용하였고, 동적특징으로는 LPC cepstrum 의 회귀계수를 사용하였다. 이들 두 개의 특징 벡터들을 각각 집단화하여 만든 두 VQ codebook과 입력으로 받아들인 정적 벡터및 동적벡터로 단어들을 DHMM(Dynamic Hidden Markov Model)으로 모델링 하였다. 전체적인 실험에서 기존의 HMM을 이용한 인식실험에서는 88.8%의 인식율을 얻었는데 반해, DHMM을 이용한 인식실험에서는 92.7%의 인식율을 보였다.

  • PDF

퍼지 벡터 양자화기 사상화와 신경망에 의한 화자적응 음성합성 (Speaker-Adaptive Speech Synthesis based on Fuzzy Vector Quantizer Mapping and Neural Networks)

  • 이진이;이광형
    • 한국정보처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.149-160
    • /
    • 1997
  • 본 연구에서는 퍼지사상화(fuzzy mapping)와 FLVQ(fuzzy learning vector quantization)에 의한 사상된(mapped)코드북을 사용하는 화자적용 음성합성 알고리즘 을 제안하고, 기존의 음성합성결과와 비교한다. 입력화자와 기준화자의 코드북은 FLVQ 방법으로 작성한다. 사상된 코드북은 퍼지 히스토그램을 작성하여 이들을 선형 결합함으로써 얻어지는 퍼지 사상화에 의하여 작성된다. 대응 코드벡터의 퍼지 히스 토그램은 동일 입력벡터에 대해 선택된 입력화자의 코드벡터와 기준화자의 코드벡터 사이의 DTW(dynamic time warping)을 행하여 대응하는 코드벡터들의 소속값 (membership value)을 누적하여 얻는다. 음성합성시에는 사상된 코드북을 사용하여 입력화자의 음성을 퍼지벡터 양자화한 다음, FCM(fuzzy c means) 합성규칙을 사용하 여 사상된 코드북내의 코드벡터가 아닌 새로운 하나의 합성벡터를 얻게 되어 좀 더 입력화자에 적응된 합성음을 얻게 된다. 이 기술의 성능평가는 성별이 서로 다른 화 자를 입력화자 및 기준화자로 선정하여 입력화자의 음성에 가까운 정도로 평가하였으 며 그 결과 기존의 음성합성보다 입력화자에 더 적용된 합성음을 얻었다.

  • PDF

시간 정보와 VQ를 이용한 DDD 지역명 인식에 관한 연구 (A Study on the Speech Recognition for DDD Area - Name Using Vector Quantization with Time Information)

  • 이성권;이강성;안태옥;조형제;변용규;김순협
    • 한국음향학회지
    • /
    • 제8권5호
    • /
    • pp.102-112
    • /
    • 1989
  • 본 논문은 불특정 화자의 DDD 지역명 인식 실험에 관한 것으로 VQ(Vector Quantization) 방식을 이용하여 실험하였고 인식대상 어휘로는 다이얼링 시스템의 응용을 목적으로 전국 146재의 DDD 지역명을 선정하였다. 특징 파라메타로는 12차 LPC Cepstrum 계수를 사용하여 코우드북을 작성하였으며, 중심점을 찾는 방법으로는 MINSUM 방법과 MINIMAX 방법을 사용하였고 코우드북 작성에는 Splitting rule 3가지를 사용하였다. 코우드북도 Single Section 코우드북과 시간정보를 포함하는 Multi Section 코우드북으로 나누어 작성하였고 Section을 Overlapping 하여가면서 코우드북을 작성하여 실험하였다. 실험 결과 minsum 방법이 minimax 보다 인식률이 좋은 것으로 나타났으며 화자 독립의 경우 약 $90\%$의 인식율을 얻을 수 있었다.

  • PDF

FSVQ, 퍼지 개념 및 이중 스펙트럼 특징을 이용한 HMM에 기초를 둔 음성 인식 (HMM-based Speech Recognition using FSVQ, Fuzzy Concept and Doubly Spectral Feature)

  • 정의봉
    • 한국컴퓨터산업학회논문지
    • /
    • 제5권4호
    • /
    • pp.491-502
    • /
    • 2004
  • 본 논문은 화자 독립의 단독어 인식에 관한 연구로써, FSVQ(first section vector quantization), 퍼지 이론 및 이중 스펙트럼 특징을 이용한 HMM(hidden Markov model) 모델을 제안한다. 제안된 연구 방법에서, 이중 특징 파라메타로써 LPC ?스트럼과 LPC 스트럼의 회귀 계수를 사용한다. 학습 데이터는 몇 개의 구간으로 나누어지며, 첫 번째 구간의 코드북(codebook)을 만든 후, 첫 번째 구간의 코드북으로 부터, 퍼지 개념을 도입하여 확률 값이 큰 순서에 의해 다중 관측열을 구한다. 그 다음, 첫 번째 구간의 관측열을 학습시키고, 같은 방법으로 확률 값을 얻은 단어가 인식되어 진다. 제안된 방법에 의한 인식 실험을 수행하는 것 이외에도 비교를 위하여 다른 방법의 인식 실험을 같은 조건하에서 같은 데이터로 수행하였다. 실험 결과, 본 연구에서 제안한 방법이 다른 방법들보다 인식률이 우수함을 입증하였다. 입증하였다.

  • PDF

Iterative LBG Clustering for SIMO Channel Identification

  • Daneshgaran, Fred;Laddomada, Massimiliano
    • Journal of Communications and Networks
    • /
    • 제5권2호
    • /
    • pp.157-166
    • /
    • 2003
  • This paper deals with the problem of channel identification for Single Input Multiple Output (SIMO) slow fading channels using clustering algorithms. Due to the intrinsic memory of the discrete-time model of the channel, over short observation periods, the received data vectors of the SIMO model are spread in clusters because of the AWGN noise. Each cluster is practically centered around the ideal channel output labels without noise and the noisy received vectors are distributed according to a multivariate Gaussian distribution. Starting from the Markov SIMO channel model, simultaneous maximum ikelihood estimation of the input vector and the channel coefficients reduce to one of obtaining the values of this pair that minimizes the sum of the Euclidean norms between the received and the estimated output vectors. Viterbi algorithm can be used for this purpose provided the trellis diagram of the Markov model can be labeled with the noiseless channel outputs. The problem of identification of the ideal channel outputs, which is the focus of this paper, is then equivalent to designing a Vector Quantizer (VQ) from a training set corresponding to the observed noisy channel outputs. The Linde-Buzo-Gray (LBG)-type clustering algorithms [1] could be used to obtain the noiseless channel output labels from the noisy received vectors. One problem with the use of such algorithms for blind time-varying channel identification is the codebook initialization. This paper looks at two critical issues with regards to the use of VQ for channel identification. The first has to deal with the applicability of this technique in general; we present theoretical results for the conditions under which the technique may be applicable. The second aims at overcoming the codebook initialization problem by proposing a novel approach which attempts to make the first phase of the channel estimation faster than the classical codebook initialization methods. Sample simulation results are provided confirming the effectiveness of the proposed initialization technique.

사상멤버쉽함수에 의한 화자적응 단어인식 (Speaker-adaptive Word Recognition Using Mapped Membership Function)

  • 이기영;최갑석
    • 한국음향학회지
    • /
    • 제11권3호
    • /
    • pp.40-52
    • /
    • 1992
  • 본논문에서는 불특정화자 음성인식의 문제점이 되는 개인차에 의한 변동을 흡수하기 위하여 사상멤버쉽함수에 의한 화자적응 단어인식 방법을 제안하였다. 이방법의 학습과정에서는 미지화자의 표준화자의 스펙트럼패턴 사이에서 작성된 사상코드북에 퍼지이론을 도입하여 사상멤버쉽함수를 작성하였으며, 인식과정에서는 미지화자의 음성패턴을 사상멤버쉽함수에 의해 표준화자의 음성패턴에 적응된 패턴으로 재구성하고 뉴럴-퍼지패턴매칭에 의해 단어를 인식하였다. 본 방법의 타당성을 평가하기 위하여, 28개의 DDD 지역명을 대상으로 실험한 결과, 종래의 사상코드북에 의한 벡터양자화 화자적응방법에서는 64.9[%], 퍼지벡터양자화 화자적응방법에서는 76.1[%]의 인식율을 얻었으나, 사상멤버쉽함수에 의한 화자적응방법에서는 95.4[%]의 향상된 인식율을 얻으므로써 인식성능의 우수함을 확인하였다. 또한 사상멤버쉽함수의 작성과정에서는 반복된 학습과정이 불피요하며, 기억용량과 계산량도 사상코드북에 의한 화자적응방법보다 각각 1/30, 1/500배 정도였다.

  • PDF

블록 제한 트렐리스 부호화 양자화 기법을 이용한 협대역 음성 부호화기용 LPC 계수 양자화기 설계 (Designing a Quantizer of LPC Parameters for the Narrowband Speech Coder using Block-Constrained Trellis Coded Quantization)

  • 전자경;박상국;강상원
    • 한국통신학회논문지
    • /
    • 제32권3C호
    • /
    • pp.234-240
    • /
    • 2007
  • 본 논문에서는 기존의 트렐리스 부호화 양자화 기법을 이용, 변형하여 저 복잡도 블록 제한 격자 부호화 양자화 기법 (Block-Constrained Trellis Coded Quantization, 이하 BC-TCQ)을 제안하곤 이를 이용한 협대역 음성 부호화기용 예측 BC-TCQ를 설계하였다. 트렐리스 부호화 양자화 기법은 일종의 벡터 양자화 방식으로 부호화에 요구되는 벡터 코드북을 트렐리스 구조에 기반한 스칼라 코드북으로 구성함으로써 VQ와 비교 할 만한 성능을 보일 뿐 아니라 복잡도가 훨씬 작은 특성을 보인다. 본 논문에서 제안한 예측 BC-TCQ는 프레임당 26비트에서 IS-641 음성 부호화기보다 평균 SD가 0.4107dB 향상되었으며, 더하기 연산이 64.54%, 곱하기 연산이 76.93%, 비교 연산이 2.35% 감소하였다.