• Title/Summary/Keyword: VOF 모델

Search Result 58, Processing Time 0.021 seconds

Application of CFD-VOF Model to Autonomous Microfluidic Capillary System (마이크로 모세관 유동 해석을 위한 CFD-VOF 모텔 응용)

  • Jeong J.H.;Im Y.H.;Han S.P.;Suk J.W.;Kim Y.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.224-229
    • /
    • 2004
  • The objective of this work is not only to perform feasibility studies on the CFD (computational fluid dynamics) analysis for the capillary system design but also to provide an enhanced understanding of the autonomous capillary flow. The capillary flow is evaluated by means of the commercial CFD software of FLUENT, which includes the VOF (volume-of-fluid) model for multiphase flow analysis. The effect of wall adhesion at fluid interfaces in contact with rigid boundaries is considered in terms of static contact angle. Feasibility studies are first performed, including mesh-resolution influence on pressure profile, which has a sudden increase at the liquid/gas interface. Then we perform both 2D and 3D simulations and examine the transient nature of the capillary flow. Analytical solutions are also derived for simple cases and compared with numerical results. Through this work, essential information on the capillary system design is brought out. Our efforts and initial success in numerical description of the microfluidic capillary flows enhance the fundamental understanding of the autonomous capillary flow and will eventually pave the road for full-scale, computer-aided design of microfluidic networks.

  • PDF

Numerical Study on the Atomization Process of a Supersonic Gas-Metallic Liquid Atomizer (초음속기체-금속액체 분사기의 미립화 과정에 대한 수치해석)

  • Hwang, Won-Sub;Kim, Kui-Soon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.593-602
    • /
    • 2016
  • Numerical simulations on the close-coupled supersonic gas atomizer for metallic powder production were performed in this study. A proper turbulence model was chosen and then VOF(Volume of Fluid) and DPM(Discrete Phase Model) methods were sequentially applied for the simulations of primary and secondary break-up processes of liquid metal. Diameters of parent droplets were calculated by analyzing Level-Set function contour from the VOF result. Finally, the distribution of particle diameter was obtained from the DPM result at exit of the computational domain.

Effects of Wave Focusing Device on Performance of OWC Chamber (OWC형 파력발전 공기실의 파랑집중장치의 효과에 대한 수치적인 연구)

  • Liu, Zhen;Hyun, Beom-Soo;Hong, Key-Yong;Jin, Ji-Yuan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.12-17
    • /
    • 2010
  • Oscillating Water Column (OWC) device has been widely employed in the wave energy conversion. Wave Focusing Device (WFD) is proposed to be helpful for improving the operating performance of OWC chamber. In the present paper, a Numerical Wave Tank (NWT) using two-phase VOF model is utilized to simulate the generation and propagation of incident regular waves, water column oscillation inside the chamber. The NWT consists of the continuity equation, Reynolds-averaged Navier-Stokes equations and two-phase VOF functions. The standard k- turbulence model, the finite volume method, NITA-PISO algorithm and dynamic mesh technique are employed. Effects of WFD on the operating performance of OWC chamber are investigated numerically.

A Study on Wave Responses of Vertical Tension-Leg Circular Floating Bodies (연직인장계류된 원형부유체의 파랑응답에 관한 연구)

  • Lee, Kwang-Ho;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.248-257
    • /
    • 2011
  • In the present study, we proposed a new numerical wave tank model to analyze the vertical tension-leg circular floating bodies, using a 2-D Navier-Stokes solver. An IBM(Immersed Boundary Method) capable of handling interactions between waves and moving structures with complex geometry on a standard regular Cartesian grid system is coupled to the VOF(Volume of Fluid) method for tracking the free surface. Present numerical results for the motions of the floating body were compared with existing experimental data as well as numerical results based on FAVOR(Fractional Area Volume Obstacle Representation) algorithm. For detailed examinations of the present model, the additional hydraulic experiments for floating motions and free surface transformations were conducted. Further, the versatility of the proposed numerical model was verified via the numerical and physical experiments for the general rectangular floating bodies. Numerical results were compared with experiments and good agreement was archived.

Second Order Model for Free Surface Convection (자유표면유동을 위한 이차원 모델개발)

  • Kim Seong-O.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.73-79
    • /
    • 1997
  • VOF 방법에 의한 자유표면 유동계산의 정확성을 개선하기 위해 이차정도 모델을 개발하였다. 개발된 이차원 모델의 정확성을 비교하기 위하여 여러 가지 크기의 원형 및 Solitary wave형상의 자유표면 유동을 통하여 기존에 개발된 두 가지의 일차정도 모델과 비교하였다. 비교결과 반경이 큰 원과 같이 곡률이 작은 형상의 경우에는 일차정도 모델도 비교적 정확한 결과를 보여주고 있으나 작은 반경의 원형이나 Solitary wave와 같이 곡률이 큰 형상의 경우 일차정도 모델은 많은 오차를 보여주는 반면에 이차정도 모델은 어느 경우에나 매우 정확한 결과를 보여준다.

  • PDF

A method for incompressible free surface flow including surface tension using CSF model (CSF 모델을 이용한 자유표면 유동 해석)

  • Hong I. C.;Baek J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.15-18
    • /
    • 2004
  • A numerical method for simulating two-phase flows including surface force is presented. The method is based on fractional step method of finite volume formulation and the interface is tracked with PLIC VOF method. In the CSF model, as color function, f, representing the location of interface varies steeply in the interface region, we need to use smoothed function f to get accurate unit normal and the curvature. Peskin kernel is used to get smoothed function f. A spherical drop in static equilibrium and three-dimensional merging of gas bubble are tested, resulting in the validation of this method

  • PDF

Thermo-fluid Dynamic and Missile-motion Performance Analysis of Gas-Steam Launch System Utilizing Multiphase Flow Model and Dynamic Grid System (다상 유동모델과 동적 격자계를 활용한 가스-스팀 발사체계의 열유동과 탄의 운동성능 해석)

  • Kim, Hyun Muk;Bae, Seong Hun;Park, Cheol Hyeon;Jeon, Hyeok Soo;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.48-59
    • /
    • 2017
  • In this study, an analysis of the thermo-fluid dynamic and missile-motion performance was carried out through a numerical simulation inside the missile canister. Calculation was made in an analytical volume using dynamic grid and evaporated water was used as a coolant. To analyze the interaction among the hot gas, coolant, and mixture flow, Realizable $k-{\varepsilon}$ turbulence and VOF (Volume Of Fluid) model were chosen and a parametric study was performed with the change of coolant flow rate. As a result of the analysis, pressure of the canister showed a large difference depending on the presence or absence of the coolant, and also showed a dependancy on the amount of coolant. Velocity and acceleration were dependent on the canister pressure.

COMPUTATIONAL ANALYSIS OF THERMAL FLOW WITH VARYING THE DIAMETER AND THE NUMBER OF TUBES IN PULSATING HEAT PIPES (진동형 히트 파이프에서 튜브의 지름과 개수에 따른 전산 열유동해석)

  • Han, S.H.;Choi, J.W.;Kim, S.C.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.86-93
    • /
    • 2016
  • In this paper, heat transfer characteristics of pulsating heat pipes are investigated with the diameter and the number of tubes through the computational analysis of thermal flow. The numerical simulation includes the phase change precess with VOF model using OpenFOAM software. The numerical code is modified for the phase change to occur with saturation temperature. The numerical results are compared with the previous ones to validate the present code. The resonable results have been obtained based on the mass transfer time relaxation parameter considering the density ratio. When the ratio of length to diameter and the number of tubes are on the decrease, the thermal resistances also tends to decrease in the pulsating heat pipes. These numerical results will supply the base line data to design and to manufacture the pulsating heat pipe.

Transformation of Irregular Waves due to Rectangular Submerged Non-porous Breakwaters (사각형형상 불투과성 수증방파제에 의한 불규칙파의 변형)

  • Hwang, Jong-Kil;Lee, Seung-Hyeob;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.949-958
    • /
    • 2004
  • A combined experimental and numerical effort is presented for investigation of reflection of irregular waves due to rectangular submerged breakwaters. In the numerical model, the Reynolds equations are solved by a finite difference method and k-$\varepsilon$ model is employed for the turbulence analysis. To track the free surface displacement, the volume of fluid method is employed. Numerical predictions of transmission and reflection coefficients are verified by comparing to laboratory measurements. Very reasonable agreements are observed. The reflection coefficients become stronger in proportion to numbers of submerged breakwaters.

Review of Application of VOF-Based NWT on Integrated OWC System (VOF 기반의 수치조파수조를 이용한 OWC 통합시스템 성능연구에 대한 고찰)

  • Liu, Zhen;Jin, Ji-Yuan;Hyun, Beom-Soo;Hong, Key-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2012
  • Oscillating water column is the most widely used ocean energy converting systems all over the world. The operating performance is influenced by the efficiencies of the two converting stages in the OWC chamber-turbine integrated system. In order to consider the effects of the turbine, the orifice model are carried out. The VOF based Numerical Wave Tank (NWT) is utilized to simulate the water column oscillation inside the chamber and the results are compared with corresponding experimental data. This paper reviews the state of the art in interaction among wave elevation inside the chamber and air flow rate in the duct, which are considered the turbine effects. Effects of incident wave conditions and several shape parameters on the operating performance of OWC chamber are investigated numerically. The effects of the impulse turbine on the integrated system and interaction among the wave elevation, pressure and air flow velocities variations are investigated.