• 제목/요약/키워드: VOC reduction

검색결과 78건 처리시간 0.027초

Emission of Biogenic Volatile Organic Compounds from Trees along Streets and in Urban Parks in Tokyo, Japan

  • Matsunaga, Sou N.;Shimada, Kojiro;Masuda, Tatsuhiko;Hoshi, Junya;Sato, Sumito;Nagashima, Hiroki;Ueno, Hiroyuki
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권1호
    • /
    • pp.29-32
    • /
    • 2017
  • Ozone concentration in Tokyo Metropolitan area is one of the most serious issues of the local air quality. Tropospheric ozone is formed by radical reaction including volatile organic compound (VOC) and nitrogen oxides ($NO_x$). Reduction of the emission of reactive VOC is a key to reducing ozone concentrations. VOC is emitted from anthropogenic sources and also from vegetation (biogenic VOC or BVOC). BVOC also forms ozone through $NO_x$ and radical reactions. Especially, in urban area, the BVOC is emitted into the atmosphere with high $NO_x$ concentration. Therefore, trees bordering streets and green spaces in urban area may contribute to tropospheric ozone. On the other hand, not all trees emit BVOC which will produce ozone locally. In this study, BVOC emissions have been investigated (terpenoids: isoprene, monoterpenes, sesquiterpenes) for 29 tree species. Eleven in the 29 species were tree species that did not emit BVOCs. Three in 12 cultivars for future planting (25 %) were found to emit no terpenoid BVOCs. Eight in 17 commonly planted trees (47%) were found to emit no terpenoid BVOC. Lower-emitting species have many advantages for urban planting. Therefore, further investigation is required to find the species which do not emit terpenoid BVOC. Emission of reactive BVOC should be added into guideline for the urban planting to prevent the creation of sources of ozone. It is desirable that species with no reactive BVOC emission are planted along urban streets and green areas in urban areas, such as Tokyo.

Polydopamine (PDA)-TiO2 코팅 유리섬유 직물을 이용한 VOCs의 저감 성능 및 항균성 연구 (Reduction of VOCs and the Antibacterial Effect of a Visible-Light Responsive Polydopamine (PDA) Layer-TiO2 on Glass Fiber Fabric)

  • 박서현;최예인;이홍주;박찬규
    • 한국환경보건학회지
    • /
    • 제47권6호
    • /
    • pp.540-547
    • /
    • 2021
  • Background: Indoor air pollutants are caused by a number of factors, such as coming in from the outside or being generated by internal activities. Typical indoor air pollutants include nitrogen dioxide and carbon monoxide from household items such as heating appliances and volatile organic compounds from building materials. In addition there is carbon dioxide from human breathing and bacteria from speaking, coughing, and sneezing. Objectives: According to recent research results, most indoor air pollution is known to be greatly affected by internal factors such as burning (biomass for cooking) and various pollutants. These pollutants can have a fatal effect on the human body due to a lack of ventilation facilities. Methods: We fabricated a polydopamine (PDA) layer with Ti substrates as a coating on supported glass fiber fabric to enhance its photo-activity. The PDA layer with TiO2 was covalently attached to glass fiber fabric using the drop-casting method. The roughness and functional groups of the surface of the Ti substrate/PDA coated glass fiber fabric were verified through infrared imaging microscopy and field emission scanning electron microscopy (FE-SEM). The obtained hybrid Ti substrate/PDA coated glass fiber fabric was investigated for photocatalytic activity by the removal of ammonia and an epidermal Staphylococcus aureus reduction test with lamp (250 nm, 405 nm wavelength) at 24℃. Results: Antibacterial properties were found to reduce epidermal staphylococcus aureus in the Ti substrate/PDA coated glass fiber fabric under 405 nm after three hours. In addition, the Ti substrate/PDA coated glass fiber fabric of VOC reduction rate for ammonia was 50% under 405 nm after 30 min. Conclusions: An electron-hole pair due to photoexcitation is generated in the PDA layer and transferred to the conduction band of TiO2. This generates a superoxide radical that degrades ammonia and removes epidermal Staphylococcus aureus.

Emissions of Odor, Ammonia, Hydrogen Sulfide, and Volatile Organic Compounds from Shallow-Pit Pig Nursery Rooms

  • Kafle, Gopi Krishna;Chen, Lide
    • Journal of Biosystems Engineering
    • /
    • 제39권2호
    • /
    • pp.76-86
    • /
    • 2014
  • Purpose: The objective of this study was to measure emissions of gases (ammonia ($NH_3$), hydrogen sulfide ($H_2S$) and carbon dioxide ($CO_2$)), volatile organic compounds (VOC) and odor from two shallow pit pig nursery rooms. Gas and odor reduction practices for swine operations based on the literature were also discussed. Methods: This study was conducted for 60 days at a commercial swine nursery facility which consisted of four identical rooms with mechanical ventilations. Two rooms (room 1 (R1) and room 2 (R2)) with different pig numbers and ventilation rates were used in this study. The pig manure from both the R1 and R2 were characterized. Indoor/outdoor temperatures, ventilation rates/duration, $NH_3$, $H_2S$, $CO_2$, and VOC concentrations of the ventilation air were measured periodically (3-5 times/week). Odor concentrations of the ventilations were measured two times on two days. Three different types of gas and odor reduction practices (diet control, chemical method, and biological method) were discussed in this study. Results: The volatile solids to total solids ratio (VS/TS) and crude protein (CP) value of pig manure indicated the pig manure had high potential for gas and odor emissions. The $NH_3$, $H_2S$, $CO_2$ and VOC concentrations were measured in the ranges of 1.0-13.3, 0.1-5.7, 1600-3000 and 0.0-1.83 ppm, respectively. The $NH_3$ concentrations were found significantly higher than $H_2S$ concentrations for both rooms. The odor concentrations were measured in the range of $2853-4432OU_E/m^3$. There was significant difference in odor concentrations between the two rooms which was due to difference in pig numbers and ventilation duration. The literature studies showed that simultaneous use of dietary control and biofiltration practices will be more effective and environmentally friendly for gas and odor reductions from pig barns. Conclusions: The gas and odor concentrations measured in the ventilation air from the pig rooms indicate an acute need for using gas and odor mitigation technologies. Adopting diet control and biofiltration practices simultaneously could be the best option for mitigating gas and odor emissions from pig barns.

휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성 (Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia)

  • 김종수;최석천;정수화;목진성;김두범
    • 청정기술
    • /
    • 제28권2호
    • /
    • pp.131-137
    • /
    • 2022
  • 현재 반도체 공정에서 다양한 by-product 및 미사용 가스가 배출되고 있다. 오염물질을 함유한 배기는 일반적으로 유기, 산, 알칼리, 열, 캐비넷 배기 등으로 분류하며, 각각의 배기 특성에 맞는 대기 방지설비에서 처리 후 배출된다. 유기 배기 물질로서 휘발성 유기 화합물(volatile organic compound, VOC)은 산소 함유 탄화수소, 유황 함유 계 탄화수소 및 휘발성 탄화수소를 총칭하는 물질이고, 알칼리 배기의 주요성분은 암모니아(NH3), 수산화테트라메틸암모늄(Tetramethylammonium hydroxide, TMAH)등이 있다. 본 연구의 목적은 유기와 알칼리 배기가스를 동시에 처리하기 위해 직접 연소 및 로 내 온도를 일정하게 유지하여 연소 특성 파악하고 NOX 저감률을 분석하고자 진행하였다. VOC는 Acetone, IPA(isopropyl alcohol), PGMEA(propylene glycol methyl ether acetate)을 사용하였으며, 알칼리 배기 대표 물질로는 암모니아를 사용하였다. 실험 변수로는 온도와 당량 비(equivalence ratio, ER)로 배기가스 특성을 살펴보았다. 물질별 단독 및 혼합 연소테스트를 진행하였다. VOC 단독 테스트 결과 당량 비 1.4 조건에서 완전 연소가 일어남을 확인하였다. 암모니아는 당량 비 감소에 따라 산소 및 질소산화물의 농도가 감소하였다. 혼합 연소 운전 결과 배기가스 조성 내 질소산화물의 대부분은 일산화질소였으며 이산화질소는 10 ppm 부근으로 검출되었다. 전체적으로 질소산화물의 농도는 반응온도가 증가하면서 산화반응이 활성화되어 감소하는 경향을 나타나지만 이산화탄소의 농도는 증가하는 경향을 확인하였다. 전기열원을 적용한 무 화염 연소 기술을 적용하였을 때 VOC 및 암모니아 연소가 원활하게 일어남으로써 현재 별도로 운전되는 유기 및 알칼리 배기 시스템보다 경제성 및 공간적인 측면에서 장점이 있다고 판단된다.

Importance of Green Density of Nanoparticle Precursor Film in Microstructural Development and Photovoltaic Properties of CuInSe2 Thin Films

  • Hwang, Yoonjung;Lim, Ye Seul;Lee, Byung-Seok;Park, Young-Il;Lee, Doh-Kwon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.471.2-471.2
    • /
    • 2014
  • We demonstrate here that an improvement in precursor film density (green density) leads to a great enhancement in the photovoltaic performance of CuInSe2 (CISe) thin film solar cells fabricated with Cu-In nanoparticle precursor films via chemical solution deposition. A cold-isostatic pressing (CIP) technique was applied to uniformly compress the precursor film over the entire surface (measuring 3~4 cm2) and was found to increase its relative density (particle packing density) by ca. 20%, which resulted in an appreciable improvement in the microstructural features of the sintered CISe film in terms of lower porosity, reduced grain boundaries, and a more uniform surface morphology. The low-bandgap (Eg=1.0 eV) CISe PV devices with the CIP-treated film exhibited greatly enhanced open-circuit voltage (VOC, from 0.265 V to 0.413 V) and fill factor (FF, from 0.34 to 0.55), as compared to the control devices. As a consequence, an almost 3-fold increase in the average power conversion efficiency, 3.0 to 8.2% (with the highest value of 9.02%), was realized without an anti-reflection coating. A diode analysis revealed that the enhanced VOC and FF were essentially attributed to the reduced reverse saturation current density (j0) and diode ideality factor (n). This is associated with the suppressed recombination, likely due to the reduction in recombination sites such as grain/air surfaces (pores), inter-granular interfaces, and defective CISe/CdS junctions in the CIP-treated device. From the temperature dependences of VOC, it was confirmed that the CIP-treated devices suffer less from interface recombination.

  • PDF

무기흡착제가 적용된 친환경 수성 코팅제의 특성 연구 (Characteristics of Environment-friendly Waterborne Coating Agent Applied to Inorganic Adsorbent)

  • 신종섭;이정희;곽은미;윤종국;김현범
    • 폴리머
    • /
    • 제36권5호
    • /
    • pp.622-627
    • /
    • 2012
  • 친환경 수성 코팅제의 물성 강화 및 VOCs의 저감 특성을 연구하기 위해서 poly(tetramethylene glycol) 2000, polycarbonate diol 2000, isophorone diisocyanate, dimethylolpropionic acid, 그리고 titanium dioxide를 사용하여 유/무기 하이브리드 수분산 폴리우레탄 코팅제를 제조하였다. R ratio([NCO]/[OH])에 따른 코팅제의 필름 물성 및 무기물의 적용으로 인한 VOCs의 저감 특성에 대해서 연구한 결과 R ratio가 1.5 이상인 경우에서 코팅제로 적합함을 확인하였으며 이는 하드 세그먼트의 영향으로 여겨지며 $TiO_2$의 적용으로 코팅 후 VOCs의 저감 특성을 확인하였다.

지하시설 VOCs 제거를 위한 메탈 필터의 흡착기능부여 연구 (A Study on the Application of Adsorption Function in Metal Filter for the Removal of VOCs in Underground Facilities)

  • 장영희;이상문;양희재;김성수
    • 공업화학
    • /
    • 제30권5호
    • /
    • pp.633-638
    • /
    • 2019
  • 실내공기질 중 지하시설은 휘발성유기화합물(VOC, volatile organic compound)의 처리가 미흡한 실정이며, 이를 환기와 같은 확산법이 아닌 오염물질 저감하기 위하여 다양한 제조, 활성화법을 이용해 메탈 필터에 흡착성을 부여한 제올라이트 코팅 흡착 필터소재를 제조하였다. 그 결과, 메탈폼 지지체 대비 약 2~20배 이상 흡착 성능의 증진을 확인하였으며 이는 기공의 증진에 기반함을 SEM 분석으로 확인하였다. 또한 리그닌을 첨가함에 따라 13.95 mg/g의 흡착 성능을 확보하였으며, 세척 후에도 평균 13.25 mg/g의 유사한 흡착 성능을 확보하여 높은 내구성을 가진 흡착 필터소재를 제조하였음을 확인하였다. 개발된 흡착 필터소재는 지하시설 내 기계적 환기로의 농도 저감이 아닌 근본적으로 VOCs를 제어할 수 있는 해결방법으로 제시할 수 있을 것으로 판단하였다.

국내의 농업기계에 의해 배출되는 대기 오염 물질 분석 (Analysis of Air Pollutant Emissions from Agricultural Machinery in South Korea)

  • 신창섭;박두산;홍동혁;김태한
    • 한국기계가공학회지
    • /
    • 제18권3호
    • /
    • pp.14-25
    • /
    • 2019
  • From 2019 onwards, more stringent regulations (from Stage 4 to Stage 5) are to be implemented in Europe in order to reduce the air pollutant emissions. In South Korea, the government authorities started to make new regulation to meet the European regulation. As a first step, the air pollutant emissions such as CO, NOx, SOx, TSP, $PM_{10}$, $PM_{2.5}$, VOC, $NH_3$ by agricultural machinery were analyzed based on CAPSS inventory along with the analysis in the general aspect in this study. Three levels of analysis was conducted each in agricultural machinery aspect along with in the general aspect. Per agricultural tractor, all kinds of the air pollutant emissions decreased by 25, 25, 99, 25, 25, 25, 25% for the CO, NOx, SOx, TSP, $PM_{10}$, VOC, $NH_3$ emissions each from the year 2000 to the year 2014. Per combine harvester, all kinds of the air pollutant emissions decreased by 63, 63, 91, 63, 63, 63, 63% for the CO, NOx, SOx, TSP, $PM_{10}$, VOC, $NH_3$ emissions each from the year 2000 to the year 2014.

돈사용 스크러버 및 바이오커튼의 축산악취 저감효과 분석 (Evaluation of Livestock Odor Reduction Efficiency for Odor Reduction Systems in Domestic Pig Farms)

  • 이민형;여욱현;이인복;정득영;이상연;김준규;크리스티나;최영배;강솔뫼
    • 한국농공학회논문집
    • /
    • 제64권6호
    • /
    • pp.77-86
    • /
    • 2022
  • Various odor reduction systems are being operated at pig houses to improve livestock odor issues. However, the quantitative evaluation of odor reduction efficiency is not sufficiently conducted. The analysis of factors that affect the reduction efficiency also has not been sufficiently conducted. Therefore, in this study, the reduction efficiency of representative odor reduction facilities (bio-curtain, scrubber) operated by domestic pig houses was evaluated. The odor reduction efficiency was evaluated by sampling the air before and after the odor reduction facility in 6 pig houses. Livestock odors were evaluated for complex odors, ammonia, hydrogen sulfide, and VOC. To find factors for reduction efficiency, temperature, humidity, pH of washing resolution, type of washing water, and ventilation rate was measured. As a result, it was found that the scrubber system had the highest reduction efficiency. The reduction efficiency was found to be affected by the scrubber's washing resolution, filler, operating conditions, and size. Bio-curtains may have problems such as deterioration of fan performance due to ventilation fan load, groundwater pollution, and excessive use of groundwater.