• Title/Summary/Keyword: VOC Sampler

Search Result 19, Processing Time 0.032 seconds

Air Sampling For Volatile Organics Using an Adsorbent (흡착제를 이용한 휘발성 유기물 채취)

  • ;L.R.Berrafato
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.41-46
    • /
    • 1992
  • To perform a long-term ambient sampling study at a residential site, an air sampler was constructed to collect 24-hour integrated air samples suitable for the volatile organic compounds (VOCs) analysis. It includes an esthetically acceptance due to proximity to homes, as fell as providing the required sampling specifications. The VOCs sampler accomodates four 5/8 "stainless steel(SS) traps packed with adsorbent(Tenax) and is capable of four flow rates in the range of 5 to 50 cc/min. Sintered metal filters(10 micrometer) were directly connected to the inlet of the trap adapters. Additional specifications include: 1) constructed of organically inert materials, 2) weatherproof, 3) battery operated, 4) collecting of VOCs at a breathing zone level, and 5) quiet operation with micro diaphragm pumps wrapped by the sponge. The pump/battery system was separated from the sampling shelter. Sound levels measured for this system were below permissible sound levels (NJDEP) at a residential site. The sampler has been successfully operated at both ground level in a residential area and on the roof of a one story elementary school.hool.

  • PDF

A Study on the Distributions of VOC Concentrations in Shiwha Area (시화지구에서 발생되는 VOCs 농도분포 특성 연구)

  • Kim Jin-Yong;Lee Hyo-Song;Yu Jae-Keun;Kil In-Sub;Kim Duk-Hyun;Rhee Young-Woo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.613-624
    • /
    • 2005
  • In this study, we investigated the characteristic of volatile organic compounds (VOCs) concentrations in Shiwha area, which were measured using the Open-path FTIR Gas Analyzer. The passive samplers were set for a certain period of time to obtain the average concentration of toluene, ethylbenzene, o-xylene and styrene. In addition, VOCs concentration contour maps were constructed using the Tecplot program to illustrate the VOCs concentration distribution. The residential area showed higher concentrations than the industrial area. And the summer had higher concentration value than the winter. Also, we confirmed that the VOCs concentrations ranged from 2 to several tens ppb in the vicinity of an industry than diffused VOC concentration, whereas those ranged from 0 to 5 ppb in most other areas. It was conferred that the wind change with seasons significantly affects the distribution of VOCs concentrations such as a northwesterly wind in the winter or a southwestern wind in the summer.

The study on the measurement of volatile organic compounds in the air of A and B industrial area (모 공단 대기 중 휘발성 유기화합물 측정에 관한 연구)

  • Shin, Ho-Sang;Ahn, Hye-Sil
    • Analytical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.130-144
    • /
    • 2004
  • Recently, the air pollution in A and B industrial area has become one of the most important issues, then 60 VOCs in the area were measured using a highly sensitive method. The VOCs were adsorbed onto Carbotrap using air sampler and subsequently desorbed by a thermal desorber system into gas chromatograph-mass spectrometry (TDS-GC-MS). The peaks of all compounds had good chromatographic properties and offered very sensitive response for the EI-MS (SIM). Method detection limits (MDL) ranged from 0.01 to 0.1 ppt(v/v), and linearities of calibration curves were over 0.995. We analyzed total 90 atmosphere air samples of A and B industrial complex using the method. Benzene, toluene, ethylbenzene, xylene, n-hexane, fluorotrichloromethane, carbon tetrachloride, 1,2-dichloroethane, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, styrene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, sec-butylbenzene and naphthalen were identified as the major compounds in the air, and their average concentrations were 0.81, 5.02 1.30, 3.0, 0.81, 37.9, 0.07, 0.15, 0.15, 0.79, 0.06, 0.33, 0.03, 0.12, 0.23, and 0.35 ppb(v/v), respectively. The concentrations of VOCs were low in summer and high in fall or winter. When the concentrations detected in air compare with WHO's norm, no case exceed it.

Measurement of Residential Volatile Organic Compound Exposure Through A Participant-Based Method (연구참여자에 의한 주택실내 휘발성 유기화합물 농도의 측정)

  • Hwang, Yun-Hyung;Lee, Ki-Young;Kim, Seo-Jin;Hong, Yun-Chul;Jun, Jong-Kwan;Cho, Soo-Hun
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.5
    • /
    • pp.369-375
    • /
    • 2011
  • Objectives: Exposure to hazardous chemicals during pregnancy may result incritical reproductive health outcomes. Indoor residential levels are significant component of personal exposure. The collection of residential exposure data has been hampered by the cost and participant burden of health studies of indoor air pollution. This study utilized a participant-based approach to collect volatile organic compounds concentration from homes. Methods: Four hundred thirteen women were recruited from three major hospitals in Seoul and Gyeongi Provence and 411 agreed to participate. A passive sampler (OVM 3500, 3M, USA) with instructions were given to the participants, as well as a questionnaire. They were asked to deploy the sampler in their homes for three to five days and return them viapre-stamped envelope. Results: Three hundred forty six participants returned the sampler. Among the returned samplers, three hundred samplers satisfied our monitoring quality criteria. The success rate of the monitoring method was 73%. The geometric mean of TVOC level was 429(2) ${\mu}g/m^3$. The TVOC guideline of 500 ${\mu}g/m^3$ was exceeded in 38% of the houses. The residential VOC levels were significantly associated with remodeling of the house. Conclusions: The results suggested that a participant-based sampling approach may be a feasible and costeffective alternative to exposure assessment involving home visits by a field technician.

Comparison of VOCs Concentration Characteristic According to Measurement Methods in Exhibition Hall (휘발성유기화합물(VOCs)의 측정방법에 따른 유물 전시관 내 농도 분포 특성 비교)

  • Lim, BoA;Lee, Sun Myung
    • 보존과학연구
    • /
    • s.35
    • /
    • pp.25-44
    • /
    • 2014
  • In this study, measured annual year and seasonal concentrations of VOCs by Active type and Passive type using the measurement and analysis method in the exhibition hall and outdoor. It was compared with the correlation between the methods according the comparison of methods to measured concentrations. As a results, the annual average concentrations of TVOC in exhibition room($906.5{\mu}g/m^3$) was greater than for most of the study period, more than 1.8 times the standard in the Ministry of Environment. ${\Sigma}VOCs$ concentration of exhibition room by Active type was higher than Passive type. Some VOCs was decreased with the lapse of time a temporary increase tendencies was. The annual average I/O ratio of TVOC was 9.0, ${\Sigma}VOCs$ was confirmed to occur in a large amount inside the exhibition hall ${\Sigma}VOCs$ was studied to 34.0. Correlation coefficient of ${\Sigma}VOCs$ was 0.367. Toluene was 0.567 that the survey was the largest analysis to the relationship between the two methods.

  • PDF

Occurrence and distribution of indoor volatile organic compounds in residential spaces by sampling methods (시료채취 방식에 따른 주거 공간 내 휘발성유기화합물 발생 특성 평가)

  • Lee, Suyeon;Kim, Daekeun
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.362-371
    • /
    • 2018
  • Indoor Volatile organic compounds (VOCs) are classified as known or possible toxicants and odorants. This study characterized VOC levels in 11 homes in an area in the capital of Seoul by using two different methods of VOCs sampling, which are the active sampling using a thermal sorption tube and the passive sampling using a diffusion sampler. When using the active sampling method, the total target VOC concentration ranged from 41.7 to $420.7{\mu}g/m^3$ (mean $230.4{\mu}g/m^3$ ; median $221.8{\mu}g/m^3$) during winter and 21.3 to $1,431.9{\mu}g/m^3$ (mean $340.1{\mu}g/m^3$; median $175.4{\mu}g/m^3$) during summer. When using the passive method, 29.6 to $257.5{\mu}g/m^3$ (mean $81.8{\mu}g/m^3$; median $49.4{\mu}g/m^3$) during winter and 1.2 to $5,131.1{\mu}g/m^3$ (mean $1,758.8{\mu}g/m^3$; median $1,375.1{\mu}g/m^3$) during summer. Forty-nine VOCs were quantified and toluene showed the highest concentration regardless of the season and the sampling method studied. The distribution of VOCs was relatively varied by using the active method. However, it showed a low correlation with indoor environmental factors such as room temperature, humidity and ventilation time. The correlation between indoor environmental factors and VOCs were relatively high in the passive method. In particular, these characteristics were confirmed by principal component analysis.

A comparative analysis of volatile organic compound levels in field samples between different gas chromatographic approaches (분석기법의 차이에 따른 현장시료의 VOC 분석결과 비교연구: 분석오차의 발생 양상과 원인)

  • Ahn, Ji-Won;Pandey, Sudhir Kumar;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.465-476
    • /
    • 2010
  • In this study, a number of volatile organic compounds (VOCs) including benzene, toluene, p-xylene, styrene, and methyl ethyl ketone were analyzed from samples collected in ambient air and under the field conditions. These samples were analyzed independently by two different set-ups for VOC analyses, i.e., between [1] gas chromatography/flame ionization detector with tube sampling - (F-T system) and [2] gas chromatography/mass spectrometer with bag sampling (M-B system). The analytical results derived by both systems showed fairly similar patterns in relative sense but with moderately large differences in absolute sense. The results of M-B system were high relative to F-T system with the F-T/M-B ratio below 1. If the relative biases of the two measurement techniques are derived in terms of percent difference (PD) in concentration values, the results were generally above 35% on average. A student t-test was applied to investigate the statistical significance of those differences between the systems. The results of both analytical systems were different at 95% confidence level for toluene, p-xylene, styrene, and methyl ethyl ketone (P < 0.043). However, F-T and M-B systems showed strong correlations for toluene and p-xylene. The observed bias is explained in large part by such factors as the differences in standard phases used for each system and the chemical loss inside the bag sampler.

A Correlation Study between the Environmental, Personal Exposures and Biomarkers for Volatile Organic Compounds (대기 중 휘발성유기오염물질의 환경, 개인 및 인체 노출의 상관성 연구)

  • Jo, Seong-Joon;Shin, Dong-Chun;Chung, Yong;Breysse, Patrick N.
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.3
    • /
    • pp.197-205
    • /
    • 2002
  • Volatile organic compounds (VOCs) are an important public health problem throughout the world. Many important questions remain to be addressed in assessing exposure to these compounds. Because they are ubiquitous and highly volatile, special techniques must be applied in the analytical determination of VOCs. Personal exposure measurements are needed to evaluate the relationship between microenvironmental concentrations and actual exposures. It is also important to investigate exposure frequency, duration, and intensity, as well as personal exposure characteristics. In addition to air monitoring, biological monitoring may contribute significantly to risk assessment by allowing estimation of absorbed doses, rather than just the external exposure concentrations, which are evaluated by environmental and personal monitoring. This study was conducted to establish the analytic procedure of VOCs in air, blood, urine and exhaled breath and to evaluate the relationships among these environmental media. The subjects of this study were selected because they are occupationally exposed to high levels of VOCs. Environmental, personal, blood, urine and exhalation samples were collected. Purge & trap, thermal desorber, gas chromatography and mass selective detector were used to analyze the collected samples. Analytical procedures were validated with the“break through test”, 'quot;recovery test for storage and transportation”,“method detection limit test”and“inter-laboratory QA/QC study”. Assessment of halogenated compounds indicted that they were significantly correlated to each other (p value < 0.01). In a similar manner, aromatic compounds were also correlated, except in urine sample. Linear regression was used to evaluate the relationships between personal exposures and environmental concentrations. These relationships for aromatic and halogenated are as follows: Halogen $s_{personal}$ = 3.875+0.068Halogen $s_{environmet}$, ($R^2$= .930) Aromatic $s_{personal}$ = 34217.757-31.266Aromatic $s_{environmet}$, ($R^2$= .821) Multiple regression was used to evaluate the relationship between exposures and various exposure deter-minants including, gender, duration of employment, and smoking history. The results of the regression model-ins for halogens in blood and aromatics in urine are as follows: Halogen $s_{blood}$ = 8.181+0.246Halogen $s_{personal}$+3.975Gender ($R^2$= .925), Aromatic $s_{urine}$ = 249.565+0.135Aromatic $s_{personal}$ -5.651 D.S ($R^2$ = .735), In conclusion, we have established analytic procedures for VOC measurement in biological and environmental samples and have presented data demonstrating relationships between VOCs levels in biological media and environmental samples. Abbreviation GC/MS, Gas Chromatography/Mass Spectrometer; VOCs, Volatile Organic Compounds; OVM, Organic Vapor Monitor; TO, Toxic Organicsapor Monitor; TO, Toxic Organics.

A Study on the Distribution of VOC Concentrations by Attachment Position of Air Samplers for Working Environment Measurement (작업환경측정 시료 채취기의 부착 위치에 따른 유기화합물의 농도 분포에 관한 연구)

  • Kwon, Yung-Gyu;Won, Jung Il;Jang, Hyung Seok;Sim, Sang-hyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.3
    • /
    • pp.328-337
    • /
    • 2015
  • Objectives: The purpose of this study is to investigate differences in concentration according to the position at the left or right shoulder within a 30 cm of radius of workers' respirators and provide basic data for the establishment of an industrial health policy. Methods: Personal samples were collected from a total of 65 workers from 27 manufacturing firms in South Gyeongsang-do Province from November 5, 2011 to December 30, 2012 after classifying the laborers into left- and right-side groups. The organic compound samples were collected and analyzed in accordance with the NIOSH Manual of Analytical Methods (NMAM) 1501. Results: In terms of the concentration of organic compounds collected from both left and right shoulders at the position of workers' respirators, isobutyl acetate was the highest with 145 ppm at the left shoulder, followed by ethyl acetate (133.5 ppm) and toluene (38.13 ppm). At the right shoulder, on the contrary, ethyl acetate (149.3 ppm) was the highest, followed by toluene (46.26 ppm), xylene (29.63ppm) and isopropyl alcohol (28.06 ppm). Overall, the right shoulder was higher than the left shoulder in terms of concentrations. Conclusions: For the measurement of the working environment, workers' personal samples should be collected at the place closest to the respirator. In terms of the reduction of error, the attachment of two sample media is expected to reduce errors in exposure assessment.