• Title/Summary/Keyword: VNIR

Search Result 38, Processing Time 0.022 seconds

Validation of the Radiometric Characteristics of Landsat 8 (LDCM) OLI Sensor using Band Aggregation Technique of EO-1 Hyperion Hyperspectral Imagery (EO-1 Hyperion 초분광 영상의 밴드 접합 기법을 이용한 Landsat 8 (LDCM) OLI 센서의 방사 특성 검증)

  • Chi, Junhwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.399-406
    • /
    • 2013
  • The quality of satellite imagery should be improved and stabilized to satisfy numerous users. The radiometric characteristics of an optical sensor can be a measure of data quality. In this study, a band aggregation technique and spectral response function of hyperspectral images are used to simulate multispectral images. EO-1 Hyperion and Landsat-8 OLI images acquired with about 30 minutes difference in overpass time were exploited to evaluate radiometric coefficients of OLI. Radiance values of the OLI and the simulated OLI were compared over three subsets covered by different land types. As a result, the index of agreement shows over 0.99 for all VNIR bands although there are errors caused by space/time and sensors.

Relationship between Growth Factors and Spectral Characteristics of Satellite Imagery in Korea

  • Park, Ji-Hoon;Ma, Jung-Lim;Nor, Dae-Kyun;Kim, Chan-Hoi;Hwang, Hyo-Tae;Jung, Jin-Hyun;Kim, Sung-Ho;Jo, Hyeon-Kook;Lee, Woo-Kyun;Chung, Dong-Jun
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.3
    • /
    • pp.165-169
    • /
    • 2008
  • This study attempts to analyze the relationship between forest volume and age based on 5th NFI data and spectral characteristics of satellite imagery using ASTER sensor in Korea. Forest stand volume and age had the negative correlation with the spectral reflectance in all of the band (Blue, Green, Red, SWIR). With increasing of stand volume and age, spectral reflectance decrease. The spectral reflectance of band1 showed the highest correlation between stand volume and spectral reflectance among the VNIR wavelength. The spectral reflectance band 1, 2 (visible wavelength) and stand age have high correlation compared to other bands. The correlation coefficients between forest volume and vegetation indices have low relationship. This result indicates that the reflectance of blue band may be important factor to improve the potential of optical remote sensing data to estimate forest volume and age.

  • PDF

Bio-Optical Modeling of Laguna de Bay Waters and Applications to Lake Monitoring Using ASTER Data

  • Paringit, EC.;Nadaoka, K.;Rubio, MCD;Tamura, H.;Blanco, Ariel C.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.667-669
    • /
    • 2003
  • A bio-optical model was developed specific for turbid and shallow waters. Special studies were carried out to estimate absorption and scattering properties as well as backscattering probability of suspended matter. The inversion of bio-optical model allows for direct retrieval of turbidity and chlorophyll- a from the visible-near infrared (VNIR) range sensor. Time-series satellite imagery from ASTER AM-1 sensor, were used to monitor the Laguna de Bay water quality condition. Spatial distribution of temperature for the lake was extracted from the thermal infrared (TIR) sensor. Corresponding field surveys were conducted to parameterize the bio -optical model. In-situ measurements include suspended particle and chlorophyll-a concentrations profiles from nephelometric devices and processing of water samples. Hyperspectral measurements were used to validate results of the bio -optical model and satellite- based estimation. This study provides a theoretical basis and a practical illustration of applying space- based measurements on an operational basis.

  • PDF

Analysis of Changes in Vegetation Index Through Long-term Monitoring of Petroglyphs of Cheonjeon-ri, Ulju (울주 천전리 각석의 장기 모니터링을 통한 식생지수 변화 분석)

  • Ahn, Yu Bin;Yoo, Ji Hyun;Chun, Yu Gun;Lee, Myeong Seong
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.659-669
    • /
    • 2021
  • In this study, vegetation index, the vegetation index calculated based on hyperspectral images was used to monitor Petroglyphs of Cheonjeon-ri, Ulju from 2014 to 2020. To select suitable the vegetation index for monitoring, indoor analysis was performed, and considering the sensitivity to biocontamination, Normalized Difference Vegetation Index (NDVI) and Triangular Vegetation Index (TVI) were selected. As a result of monitoring using the selected vegetation index, NDVI increased from 2014 to 2018 and then decreased in 2020, after preservation treatment. On the other hand, TVI was difficult to confirm the tendency during the monitoring. This difference was due to the variation in spectral reflectance according to the photographing conditions by year. Therefore NDVI is less sensitive to spectral reflectance deviation than TVI, so it can be used for monitoring. In order for TVI to be used, however, in-depth study is needed.

A Study of Tasseled Cap Transformation Coefficient for the Geostationary Ocean Color Imager (GOCI) (정지궤도 천리안위성 해양관측센서 GOCI의 Tasseled Cap 변환계수 산출연구)

  • Shin, Ji-Sun;Park, Wook;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.275-292
    • /
    • 2014
  • The objective of this study is to determine Tasseled Cap Transformation (TCT) coefficients for the Geostationary Ocean Color Imager (GOCI). TCT is traditional method of analyzing the characteristics of the land area from multi spectral sensor data. TCT coefficients for a new sensor must be estimated individually because of different sensor characteristics of each sensor. Although the primary objective of the GOCI is for ocean color study, one half of the scene covers land area with typical land observing channels in Visible-Near InfraRed (VNIR). The GOCI has a unique capability to acquire eight scenes per day. This advantage of high temporal resolution can be utilized for detecting daily variation of land surface. The GOCI TCT offers a great potential for application in near-real time analysis and interpretation of land cover characteristics. TCT generally represents information of "Brightness", "Greenness" and "Wetness". However, in the case of the GOCI is not able to provide "Wetness" due to lack of ShortWave InfraRed (SWIR) band. To maximize the utilization of high temporal resolution, "Wetness" should be provided. In order to obtain "Wetness", the linear regression method was used to align the GOCI Principal Component Analysis (PCA) space with the MODIS TCT space. The GOCI TCT coefficients obtained by this method have different values according to observation time due to the characteristics of geostationary earth orbit. To examine these differences, the correlation between the GOCI TCT and the MODIS TCT were compared. As a result, while the GOCI TCT coefficients of "Brightness" and "Greenness" were selected at 4h, the GOCI TCT coefficient of "Wetness" was selected at 2h. To assess the adequacy of the resulting GOCI TCT coefficients, the GOCI TCT data were compared to the MODIS TCT image and several land parameters. The land cover classification of the GOCI TCT image was expressed more precisely than the MODIS TCT image. The distribution of land cover classification of the GOCI TCT space showed meaningful results. Also, "Brightness", "Greenness", and "Wetness" of the GOCI TCT data showed a relatively high correlation with Albedo ($R^2$ = 0.75), Normalized Difference Vegetation Index (NDVI) ($R^2$ = 0.97), and Normalized Difference Moisture Index (NDMI) ($R^2$ = 0.77), respectively. These results indicate the suitability of the GOCI TCT coefficients.

Estimation of Vegetation for Chinese Cabbage Using Hyperspectral Imagery (초분광 영상을 이용한 배추의 생육 추정)

  • Kim, Won Jun;Kang, Ye Seong;Kim, Seong Heon;Kang, Jeong Gyun;Jun, Sae Rom;sarkar, Tapash Kumar;Ryu, Chan Seok
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.40-40
    • /
    • 2017
  • 본 연구는 빛의 파장대가 넓어 보다 다양한 접근과 검출이 가능한 초분광 카메라 (VNIR spectral camera PS, SPECIN Filand)를 이용하여 정식시기가 다른 배추를 생육단계별로 영상을 취득한 후 배추 캐노피의 전 파장 (400~1000nm)으로 생육 추정모델을 개발하기 위해 수행하였다. 정식시기가 다른 배추를 생육단계별로 초분광 카메라로 영상을 취득한 후 취득된 영상 ($348{\times}1040$)을 ENVI (ver. 5.2, Exelis Visual Information Solutions, USA) 프로그램을 이용하여 식생지수 NDVI로 작물과 배경을 구분하였다. 배추 캐노피 영역에 전 파장을 산출한 후 반사판 영역의 전 파장을 이용하여 광 보정된 반사율을 산출하였다. 통계 프로그램인 R Project (ver.3.3.3, Development Core Team, Vienna, Austria)를 이용하여 배추의 반사율과 계측한 생육 정보를 PLSR (Partial least squares regression) 분석하여 정확도($R^2$) 및 정밀도 (RMSE [g,cm,count], RE [%])로 나타내었고 그 모델은 full-cross validation (FV) 하여 타당성을 검증하였다. 정식시기가 다른 배추의 모든 생육단계의 생육정보를 이용하여 PLSR (Partial least squares regression) 결과 엽장을 추정한 모델의 $R^2$는 84% 이상의 정확도와 RMSE 3.2cm 이하의 좋은 정밀도를 보였다. 엽폭을 추정한 모델의 $R^2$는 73% 이상의 정확도와 RMSE 3.5cm 이하의 정밀도를 보였고 엽수를 추정한 모델의 $R^2$는 93% 이상의 정확도와 RMSE 6.3Count 이하의 정밀도로 보여 캐노피의 전 파장을 이용해 생육을 추정하는 것이 가능하다고 판단되었으며 이 모델들의 타당성 검증에서도 좋은 정확도와 정밀도를 보였다. 그러나 배추의 중요한 생육인자 중 생체중을 추정한 모델의 $R^2$는 89% 이상으로 정확도가 높았으나 RMSE 571.1g 이하로 낮은 정밀도를 보여 생체중을 정확히 추정하기 어려웠다. 따라서 다른 통계분석방법으로 전 파장과 생육정보를 분석하거나 특정 밴드를 선택하여 산출한 식생지수를 이용한 추정 모델의 개발을 통하여 오차를 개선할 필요가 있다고 사료된다. 추후 반복 실험하여 분석한 추정 모델과 비교 분석하여 다양한 환경 및 생물 조건에 범용성을 가진 모델을 개발할 필요가 있다.

  • PDF

Accuracy Assessment and Classification of Surface Contaminants of Stone Cultural Heritages Using Hyperspectral Image - Focusing on Stone Buddhas in Four Directions at Gulbulsa Temple Site, Gyeongju - (초분광 영상을 활용한 석조문화재 표면오염물 분류 및 정확도 평가 - 경주 굴불사지 석조사면불상을 중심으로 -)

  • Ahn, Yu Bin;Yoo, Ji Hyun;Choie, Myoungju;Lee, Myeong Seong
    • Journal of Conservation Science
    • /
    • v.36 no.2
    • /
    • pp.73-81
    • /
    • 2020
  • Considering the difficulties associated with the creation of deterioration maps for stone cultural heritages, quantitative determination of chemical and biological contaminants in them is still challenging. Hyperspectral image analysis has been proposed to overcome this drawback. In this study, hyperspectral imaging was performed on Stone Buddhas Temple in Four Directions at Gulbulsa Temple Site(Treasure 121), and several surface contaminants were observed. Based on the color and shape, these chemical and biological contaminants were classified into ten categories. Additionally, a method for establishing each class as a reference image was suggested. Simultaneously, with the help of Spectral Angle Mapper algorithm, two classification methods were used to classify the surface contaminants. Method A focused on the region of interest, while method B involved the application of the spectral library prepared from the image. Comparison of the classified images with the reference image revealed that the accuracies and kappa coefficients of methods A and B were 52.07% and 63.61%, and 0.43 and 0.55, respectively. Additionally, misclassified pixels were distributed in the same contamination series.

Assembly and Testing of a Visible and Near-infrared Spectrometer with a Shack-Hartmann Wavefront Sensor (샤크-하트만 센서를 이용한 가시광 및 근적외선 분광기 조립 및 평가)

  • Hwang, Sung Lyoung;Lee, Jun Ho;Jeong, Do Hwan;Hong, Jin Suk;Kim, Young Soo;Kim, Yeon Soo;Kim, Hyun Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.108-115
    • /
    • 2017
  • We report the assembly procedure and performance evaluation of a visible and near-infrared spectrometer in the wavelength region of 400-900 nm, which is later to be combined with fore-optics (a telescope) to form a f/2.5 imaging spectrometer with a field of view of ${\pm}7.68^{\circ}$. The detector at the final image plane is a $640{\times}480$ charge-coupled device with a $24{\mu}m$ pixel size. The spectrometer is in an Offner relay configuration consisting of two concentric, spherical mirrors, the secondary of which is replaced by a convex grating mirror. A double-pass test method with an interferometer is often applied in the assembly process of precision optics, but was excluded from our study due to a large residual wavefront error (WFE) in optical design of 210 nm ($0.35{\lambda}$ at 600 nm) root-mean-square (RMS). This results in a single-path test method with a Shack-Hartmann sensor. The final assembly was tested to have a RMS WFE increase of less than 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm. During the procedure, we confirmed the validity of using a Shack-Hartmann wavefront sensor to monitor alignment in the assembly of an Offner-like spectrometer.