• Title/Summary/Keyword: VMT

Search Result 18, Processing Time 0.038 seconds

Characterization of Composite Membranes Made from Sulfonated Poly(arylene ether sulfone) and Vermiculite with High Cation Exchange Capacity for DMFC Applications (높은 이온교환능력을 가지는 버미큘라이트와 술폰화된 폴리아릴렌에테르술폰으로 제조된 복합막의 연료전지 적용을 위한 특성평가)

  • Kim, Deuk-Ju;Hwang, Hae-Young;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.389-397
    • /
    • 2011
  • In this study, polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) were prepared using a solution casting method with different amount of vermiculite (VMT) content. The dispersion of VMT particles in the SPAES matrix was confirmed by means of a scanning electron microscopy observation. The composite membrane containing less than 1 wt% of VMT has a smooth skin on the top and bottom, which means there is a good dispersion of VMT in the matrix. The water uptake of the composite membranes gradually increases as the temperature increases, and the results confirm that all the adsorbed water is bound water because VMT has a strong water affinity on account of its high cation exchange value. A composite membrane with a VMT content of less than 1 wt% increases the proton conductivity and reduces the methanol permeability. Of all the composite membranes, the membrane SPAES/VMT 1.0 has the best fuel cell performance in terms of membrane selectivity. The performance value of SPAES/VMT 1.0 is double that of Nafion 112, which suggests that SPAES/VMT1.0 could be an excellent candidate for direct methanol fuel cells.

An e-Business Architecture Framework using Information Technology Architecture (ITA 기반의 전자상거래 아키텍처 프레임워크)

  • Kim, Duk-Hyun
    • Information Systems Review
    • /
    • v.4 no.2
    • /
    • pp.41-58
    • /
    • 2002
  • This paper is to show the meaningfulness of applying Information Technology Architecture (ITA) to the modeling of a nation-wide e-Business architecture framework. After reviewing various architecture frameworks we suggested a unique architecture framework called VMT (Views, Models, and Time-frames). VMT represents five views of e-Business stakeholders; six models of data, function, network, agent, event, and rule; and three timeframes of short-term, mid-term, and long-term. VMT is an extension and unification of popular frameworks including Zachman's framework that has international recognition and use, C4ISR architecture framework of US DoD's, and Federal Enterprise Architecture Framework (FEAF) of the US Federal Government's.

Organically Modified Vermiculite-Poly(Ethylene Terephthalate) Nanocomposites (유기물로 개질한 나노점토-폴리(에틸렌 테레프탈레이트) 복합재료의 기계적 특성)

  • Hai Anh Thi Le;Yong Tae Park
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.275-280
    • /
    • 2023
  • Because polymer-based composites are lightweight and have excellent properties, their demand is growing rapidly as a way to fulfill properties that are difficult to achieve with a single material. As a result, there has been a lot of research on polymer nanocomposites, which are made by dispersing particles with a size of 1-100 nm in a polymer matrix. In addition, many nanocomposites using thermoplastic resins as matrix materials are being studied. In this study, poly(ethylene terephthalate) (PET)-based nanocomposites containing organic nanoclays modified with cetyltrimethylammonium bromide (CTAB) as interlayer materials were prepared. Among various nanoclays, vermiculite (VMT) has been studied to increase the mechanical and thermal properties of polymeric materials due to its low cost, abundant reserves and unique properties. However, the strong interlayer bonding of VMT has limited its utilization due to its poor exfoliation and dispersion performance within polymer matrices. In this study, the mechanical properties of the VMT content were confirmed by tensile tests, the dispersion of VMT particles in the PET matrix was evaluated by TEM cross-sectional images, and the nitrogen gas barrier properties were evaluated.

Development of a Virtual Machine Tool - Part 1 (Cutting Force Model, Machined Surface Error Model and Feed Rate Scheduling Model) (가상 공작기계의 연구 개방 - Part 1 (절삭력 모델, 가공 표면 오차 모델 및 이송 속도 스케줄링 모델))

  • Yun, Won-Su;Go, Jeong-Hun;Jo, Dong-U
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.74-79
    • /
    • 2001
  • In this two-part paper, a virtual machine tool (VMT) is presented. In part 1, the analytical foundation of a virtual machining system, envisioned as the foundation for a comprehensive simulation environment capable of predicting the outcome of cutting processes, is developed. The VMT system purposes to experience the pseudo-real machining before real cutting with a CNC machine tool, to provide the proper cutting conditions for process planners, and to compensate or control the machining process in terms of the productivity and attributes of products. The attributes can be characterized with the machined surface error, dimensional accuracy, roughness, integrity and so forth. The main components of the VMT are cutting process, application, thermal behavior and feed drive modules. In part 1, the cutting process module is presented. The proposed models were verified experimentally and gave significantly better prediction results than any other method. The thermal behavior and feed drive modules are developed in part 2 paper. The developed models are integrated as a comprehensive software environment in part 2 paper.

  • PDF

Development of a Virtual Machine Tool - Part 2: Dynamic Cutting Force Model, Thermal Behavior Model, Feed Drive System Model, and Comprehensive Software Environment

  • Ko, Jeong-Hoon;Yun, Won-Soo;Kang, Seok-Jae;Cho, Dong-Woo;Ahn, Kyung-Gee;Yun, Seung-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.42-47
    • /
    • 2003
  • In Part 2 of this paper, the dynamic cutting force model, thermal behavior model, and feed drive model used in the development of a virtual machine tool (VMT) are briefly described. Some results are presented to verify the proposed models. Experimental data agreed well with the predicted results fer each model. A comprehensive software environment to integrate the models into a VMT is also proposed.

Analysis of Rebound Effect from Road Extension in Seoul, Busan, Daegue, and Incheon (도로연장에 대한 반등효과 분석 -서울, 부산, 대구, 인천을 중심으로-)

  • Lee, Min Ha;Cho, Yongsung
    • Environmental and Resource Economics Review
    • /
    • v.26 no.2
    • /
    • pp.173-203
    • /
    • 2017
  • The existence of rebound effect from road extension in Korea has been quantitatively verified using cross-sectional, time series data on four major cities - Seoul, Busan, Daegue and Incheon - between 2000 and 2013. The linear mixed effects model was constructed from six variables: total vehicle miles traveled (VMT), road extension, public transport users, gross regional domestic product (GRDP), regional population and fuel consumption. The main results can be summarized as VMT is positively correlated to road extension while negatively with public transport users. It indicates that the road extension-centered "supply-side" transportation policy induces "additional travel" and create "generated traffic" by enhancing driving efficiencies directly, or degrading other transport modes indirectly. Hence, the ultimate goal of road congestion reduction requires public transport-centered "demand management" rather than current supply-side policies.

Development of a Virtual Machine Tool-Part 4: Mechanistic Cutting Force Model, Machined Surface Error Model, and Feed Rate Scheduling Model

  • Yun, Won-Soo;Ko, Jeong-Hoon;Cho, Dong-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.71-76
    • /
    • 2003
  • A virtual machine tool (VMT) is presented in this two-part paper. In Part 1, the analytical foundation for a virtual machining system is developed, which is envisioned as the foundation for a comprehensive simulation environment capable of predicting the outcome of cutting processes. The VHT system undergoes "pseudo-real machining", before actual cutting with a CNC machine tool takes place, to provide the proper cutting conditions for process planners and to compensate or control the machining process in terms of the productivity and attributes of the products. The attributes can be characterized by the machined surface error, dimensional accuracy, roughness, integrity, and so forth. The main components of the VMT are the cutting process, application, thermal behavior, and feed drive modules. In Part 1, the cutting process module is presented. When verified experimentally, the proposed models gave significantly better prediction results than any other methods. In Part 2 of this paper, the thermal behavior and feed drive modules are developed, and the models are integrated into a comprehensive software environment.vironment.

A Study on Calculation of Test Load for Full-Scale Airframe Structural Test of Composite Aircraft (복합재 항공기 전기체 구조시험 시험하중 산출 방법 연구)

  • Choi, Ik-Hyeon;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.146-153
    • /
    • 2011
  • Some methods of calculation of test load value from design load data were investigated which will be applied at strap installed full-scale airframe of composite aircraft. These methods were applied to left wing of KC-100 composite aircraft and the calculated test load values were compared with each others. Generally since test load values are differently calculated according to each aircraft type and position of straps, all calculation methods mentioned at this study need to be applied and compared to each aircraft. Finally the most appropriate method needs to be selected.

A load-bearing structural element with energy dissipation capability under harmonic excitation

  • Pontecorvo, Michael E.;Barbarino, Silvestro;Gandhi, Farhan S.;Bland, Scott;Snyder, Robert;Kudva, Jay;White, Edward V.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.345-365
    • /
    • 2015
  • This paper focuses on the design, fabrication, testing and analysis of a novel load-bearing element with energy dissipation capability. A single element comprises two von-Mises trusses (VMTs), which are sandwiched between two plates and connected to dashpots that stroke as the VMTs cycle between stable equilibrium states. The elements can be assembled in-plane to form a large plate-like structure or stacked with different properties in each layer for improved load-adaptability. Also introduced in the elements are pre-loaded springs (PLSs) that provide high initial stiffness and allow the element to carry a static load even when the VMTs cannot under harmonic disturbance input. Simulations of the system behavior using the Simscape environment show good overall correlation with test data. Good energy dissipation capability is observed over a frequency range from 0.1 Hz to 2 Hz. The test and simulation results show that a two layer prototype, having one soft VMT layer and one stiff VMT layer, can provide good energy dissipation over a decade of variation in harmonic load amplitude, while retaining the ability to carry static load due to the PLSs. The paper discusses how system design parameter changes affect the static load capability and the hysteresis behavior.