• Title/Summary/Keyword: VLC(Visible Light Communication)

Search Result 185, Processing Time 0.025 seconds

Modeling Green-light Fiber Amplifiers for Visible-light Communication Systems

  • Khushik, Muhammad Hanif Ahmed Khan;Jiang, Chun
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.105-110
    • /
    • 2019
  • The visible-light communication (VLC) system is a promising candidate to fulfill the present and future demands for a high-speed, cost-effective, and larger-bandwidth communication system. VLC modulates the visible-light signals from solid-state LEDs to transmit data between transmitter and receiver, but the broadcasting and the line-of-sight propagation nature of visible-light signals make VLC a communication system with a limited operating range. We present a novel architecture to increase the operating range of VLC. In our proposed architecture, we guide the visible-light signals through the fiber and amplify the dissipated signals using visible-light fiber amplifiers (VLFAs), which are the most important and the novel devices needed for the proposed architecture of the VLC. Therefore, we design, analyze, and apply a VLFA to VLC, to overcome the inherent drawbacks of VLC. Numerical results show that under given constant conditions, the VLFA can amplify the signal up to 35.0 dB. We have analyzed the effects of fiber length, active ion concentration, pump power, and input signal power on the gain and the noise figure (NF).

To improve the performance of BER using the 2-step interleaving for Visible Light Communication with LEDs (LED를 이용한 가시광 통신 시스템에서 2-step 인터리빙을 통한 BER 성능 향상)

  • Lee, Jonghyun;Seo, Hyoduck;Han, Doohee;Lee, Kyesan;Lee, Kyujin
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.46-53
    • /
    • 2015
  • Visible Light Communication (VLC) is effective way to realize the light device and communication device using a Light Emitting Diode (LED) simultaneously. VLC has high security for Field Of View (FOV) communication area, also which is possible to transmit the high data rate using visible light. In VLC, transmitting the divided data by the RGB channels is higher data rate than transmitting the same data by RGB channels. However, it occurred the burst error by scattering and reflection of visible light which is impossible to restore that. To solve the problem, we proposed the 2-step interleaving scheme that high data rate and improve the performance of BER in VLC. The proposed system implements cyclic interleaving and convolutional interleaving that is able to be standardized the performance of RGB channels and improve the performance of BER using error correction.

LED Illumination Infrastructure for Ubiquitous Society based on the Visible Light Communication (가시광통신 기반 u-Society 구현을 위한 LED 조명 인프라)

  • Jeon, Jeong-U
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.273-276
    • /
    • 2008
  • This article describes a LED illumination infrastructure for ubiquitous society based on the Visible Light Communication technology. The VLC is one of the advanced communication system using "Visible Light". The VLC system has a lot of advantageous features and can be used in various places for the next future generation. So, we analyzed ubiquitous service model based on the VLC system and some applications. And we renewed discussion about LED illumination infrastructure for u-Society.

  • PDF

VLC4WoT : Visible Light Communication for Web of Things

  • Durgun, Mahmut;Gokrem, Levent
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1502-1519
    • /
    • 2020
  • Recently, new devices have been developed for the Internet of Things concept. The devices commonly use RF (Radio Frequency) based wireless communication. With the increase in the number of devices, the space allocated for the radio frequency band in wireless communication fills rapidly. Visible Light Communication (VLC) is an alternative, secure and economical communication technology that uses light instead of radio frequencies. While Web of Things (WoT) is the adaptation of the experience and knowledge acquired from the web into the internet of things ecosystems. By combining these two technologies, the development of the Visible Light Communication for Web of Things (VLC4WoT) system, which can use VLC and WoT technologies, has been our motivation. In our study, microcontroller control circuit was created for VLC4WoT system. Control of the circuits over the internet was performed. VLC based receiver and transmitter units have been developed for wireless communication. Web based interface was created for control. The test apparatus consisting of four objects with four outputs and a transfer unit was carried out. In this test, communication was achieved successfully. It was presented in the study that VLC can be used in the web of things architecture. In the future, it is envisaged to use this system as a safe and economical system in indoor environments.

Performance Analysis of Spatial Multiplexing in MIMO Based Visible Light Communication System

  • Mondal, Ratan Kumar;Saha, Nirzhar;Jang, Yeong Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.797-801
    • /
    • 2013
  • Visible light communication (VLC) is a rapidly growing area of research and applications, due to the potential and predicted high efficiency of bandwidth. One of the key challenges in VLC technology is the choice of devices which are going to be deployed VLC features. Smartphone rationally uses the most widely deployed visible light sensor i.e. image sensor in camera, which could be used to receive the intensity modulated data. Image sensor based VLC system would be the most deployable scenario but initially the capacity was not much attractive compared with photodetector based VLC system. Here, the spatial multiplexing is proposed in MIMO based VLC system to increase the system capacity by utilizing the property of spatial separation of optical light sources in smartphone's camera module. The active pixels of imaging plane act as the multiple receivers which could be able to use on MIMO spatial multiplexing to enhance the system performance.

Implementation of VLC Relay Module to Improve Communication Disconnection Phenomenon and Coverage Expansion in Non-Line-of-Sight Area (비가시선 영역의 통신 단절 현상 개선과 커버리지 확장을 위한 VLC 릴레이 모듈 구현)

  • Lee, Sang-gwon;Lee, Dae-hee;Oh, Chang-heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.140-146
    • /
    • 2018
  • Recently, VLC(Visible Light Communication) fusing with LED(Light Emitting Diode) used in indoor lighting and wireless communication technology has attracted attention. However, the VLC can communicate only within the coverage to measure the optical signal and the communication disconnection phenomenon is occur in the NLoS(Non-Line-of-Sight) area. In this paper, we propose VLC relay module to extend the coverage of VLC and improve the communication disconnection phenomenon in NLoS area. The proposed VLC relay module transmits the packet received from the transmitter to the VLC relay module and receiver. The experiment was carried out by installing one VLC transmitter and three VLC relay modules, communication coverage expansion and the improvement of communication disconnection phenomenon in the NLoS were confirmed by the increase of the VLC relay module. Also, we confirmed that the optical signal measurement performance is improved 2.4 times by using the dual sampling method.

Visible Light Communication Employing Optical Beamforming: A Review

  • Kim, Sung-Man
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.308-314
    • /
    • 2018
  • Visible light communication (VLC) is considered a strong future candidate for indoor wireless communication. However, its performance seems to be relatively unsatisfactory when compared to wireless local area network (WLAN) communication using millimeter waves. To improve the performance of VLC, numerous technologies have been proposed so far, in both electrical and optical domains. Among the proposals, optical beamforming (OB) is an optical-domain technology that can concentrate light in a specific direction or on a target spot. It can significantly improve VLC performance and can be widely used, because it does not depend on electrical modulation schemes. Therefore, this review discusses the concept, principle, and types of OB, the structure of a VLC system using OB, performance results of OB, and the combination of OB with electrical signal modulation in VLC. OB is expected to be one of the key techniques in future VLC implementations, similar to radio-frequency beamforming in millimeter-wave communication.

Time-division Visible Light Communication Using LED Lamp Light

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.145-150
    • /
    • 2015
  • We introduce a new method of time-division visible light communication (VLC) using LED lamp light for the generation of synchronizing pulses. The LED lamp, driven by an AC 220-V power line, radiates light that has a 120-Hz frequency component. The pulse generator in each VLC system receives the LED lamp light and generates the synchronizing pulses that are required for time-division transmission of multiple VLC channels. The pulse period is subdivided into several time slots for VLC channels. In experiments, 120-Hz synchronizing pulses were generated using LED lamp light, and three VLC channels were transmitted independently without interfering with each other in a condition where the VLC signals overlapped in space. This configuration is useful in constructing multiple wireless sensor networks that are safe and without interference in locations where LED lamps are used for illumination.

A Study on a Visible Light Communication using LED in Under-water Environment (LED조명을 이용한 수중환경에서의 VLC 연구)

  • Jung, Hui-Sok;Yang, Yeon-Mo;Huh, Kyung-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.1-6
    • /
    • 2011
  • LED(Light Emitting Diode) components have advantages of longer lifetime, lower power consumption and easy-to-control, compare to normal lamp and fluorescent light, according to the development of recent technologies. Thus, lots of illuminations which utilize LED components could be used. Recently, Visible Light Communication(VLC) which is a part of communication technologies, utilizing high speed response characteristic of LED components, started receiving public attention. In case of VLC, there is no need of frequency allocation due to no use of radio, but also no interference exists during data transmission, much different in ISM((Industrial Scientific Medical band). This is the reason why a lot of research results about VLC are becoming issued. In this paper, a survey of feasibility for using VLC utilizing an original LED illumination for underwater applications has been done and a primitive possibility of its application has been examined.

Visible Light Communication Systems for Sensor Networks Using Synchronizing Pulse Transmission Through the Power Lines (전력선 전송 동기신호를 이용한 센서 네트워크용 가시광통신시스템)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.212-218
    • /
    • 2013
  • In this paper, we introduce a new method to reduce the inter-channel crosstalk in visible light communication (VLC) systems using the synchronizing pulses transmitted through the power lines. Synchronizing pulses are simultaneously transmitted to multiple VLC transmitters and receivers through the 220V power line. Each VLC transmitter modulates an LED and each VLC receiver demodulates the signal light in the time slot that is allocated with reference to the synchronizing pulses. This method is very simple and effective to prevent the inter-channel crosstalk in VLC systems for sensor networks because every VLC system can easily get the synchronizing pulses from the nearby power line.