• 제목/요약/키워드: VLBI combination

검색결과 7건 처리시간 0.02초

VLBI Type Experimental Observation of GPS

  • Kwak, Young-Hee;Kondo, Tetsuro;Amagai, Jun;Gotoh, Tadahiro;Sasao, Tetsuo;Cho, Jung-Ho;Kim, Tu-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권2호
    • /
    • pp.173-180
    • /
    • 2010
  • As a preparatory study for Global Positioning System-Very Long Baseline Interferometry (GPS-VLBI) hybrid system, we examined if VLBI type observation of the GPS signal is realizable through a test experiment. The test experiment was performed between Kashima and Koganei, Japan, with 110 km baseline. The GPS L1 and L2 signals were received by commercial GPS antennas, down-converted to video-band signals by specially developed GPS down converters, and then sampled by VLBI samplers. The sampled GPS data were recorded as ordinary VLBI data by VLBI recorders. The sampling frequency was 64 MHz and the observation time was 1 minute. The recorded data were correlated by a VLBI correlator. From correlation results, we simultaneously obtained correlation fringes from all 8 satellites above a cut-off elevation which was set to 15 degree. 87.5% of L1 fringes and 12.5% of L2 fringes acquired the Signal to Noise Ratios which are sufficient to achieve the group delay precision of 0.1nsec that is typical in current geodetic VLBI. This result shows that VLBI type observation of GPS satellites will be readily realized in future GPS-VLBI hybrid system.

VLBI TRF Combination Using GNSS Software

  • Kwak, Younghee;Cho, Jungho
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권4호
    • /
    • pp.315-320
    • /
    • 2013
  • Space geodetic techniques can be used to obtain precise shape and rotation information of the Earth. To achieve this, the representative combination solution of each space geodetic technique has to be produced, and then those solutions need to be combined. In this study, the representative combination solution of very long baseline interferometry (VLBI), which is one of the space geodetic techniques, was produced, and the variations in the position coordinate of each station during 7 years were analyzed. Products from five analysis centers of the International VLBI Service for Geodesy and Astrometry (IVS) were used as the input data, and Bernese 5.0, which is the global navigation satellite system (GNSS) data processing software, was used. The analysis of the coordinate time series for the 43 VLBI stations indicated that the latitude component error was about 15.6 mm, the longitude component error was about 37.7 mm, and the height component error was about 30.9 mm, with respect to the reference frame, International Terrestrial Reference Frame 2008 (ITRF2008). The velocity vector of the 42 stations excluding the YEBES station showed a magnitude difference of 7.3 mm/yr (30.2%) and a direction difference of $13.8^{\circ}$ (3.8%), with respect to ITRF2008. Among these, the 10 stations in Europe showed a magnitude difference of 7.8 mm/yr (30.3%) and a direction difference of $3.7^{\circ}$ (1.0%), while the 14 stations in North America showed a magnitude difference of 2.7 mm/yr (15.8%) and a direction difference of $10.3^{\circ}$ (2.9%).

반사타겟 좌표 및 오차정보를 이용한 세종 VLBI IVP 위치계산 (Estimation of Sejong VLBI IVP Point Using Coordinates of Reflective Targets with Their Measurement Errors)

  • 홍창기;배태석;이상오
    • 한국측량학회지
    • /
    • 제38권6호
    • /
    • pp.717-723
    • /
    • 2020
  • VLBI, SLR, DORIS, GNSS와 같은 우주측지기술 사이의 3차원 벡터를 결정하는 작업은 ITRF에 중요한 요소이다. 따라서 각각의 우주측지기술에 해당되는 IVP를 정확하게 계산할 필요가 있다. 본 연구에서는 기존 모델에 비해 업데이트된 수학모델을 사용하여 세종시에 위치한 VLBI의 IVP 위치를 계산함으로써 계산의 효율과 신뢰성을 높였다. 관측값으로는 안테나에 부착된 반사타겟의 좌표가 사용되었으며 이때 관측오차크기는 1.5 mm로 설정하였다. 조정계산을 통해 VLBI IVP 좌표와 정확도를 계산했으며 기존 연구에서 제시한 값과 비교했을 때 성공적으로 계산이 된 것으로 판단된다. 하지만 실제 관측오차가 고려된 VLBI IVP를 계산하기 위해서는 향후 VLBI IVP 계산을 위한 추가적인 지상측량이 필요하다.

Amplitude Correction Factors of KVN Observations Correlated by DiFX and Daejeon Correlators

  • Lee, Sang-Sung
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.54.1-54.1
    • /
    • 2015
  • We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22 GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institue (KASI) with Very Long Baseline Array (VLBA) observations at 22 GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C 454.3 and NRAO 512 which are almost unresolved for baselines in a range of 350-477 km. VLBA visibility data of the sources observed with similar baselines as KVN are selected, fringe-fitted, calibrated, and compared in their amplitudes. We found that visibility amplitudes of KVN observations should be corrected by factors of 1.14 and 1.40 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combination of two steps of 2-bit quantization in KVN observing systems and characteristics of Daejeon correlator.

  • PDF

AMPLITUDE CORRECTION FACTORS OF KOREAN VLBI NETWORK OBSERVATIONS

  • LEE, SANG-SUNG;BYUN, DO-YOUNG;OH, CHUNG SIK;KIM, HYO RYOUNG;KIM, JONGSOO;JUNG, TAEHYUN;OH, SE-JIN;ROH, DUK-GYOO;JUNG, DONG-KYU;YEOM, JAE-HWAN
    • 천문학회지
    • /
    • 제48권5호
    • /
    • pp.229-236
    • /
    • 2015
  • We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22 GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Baseline Array (VLBA) observations at 22 GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C 454.3, NRAO 512, OJ 287, BL Lac, 3C 279, 1633+382, and 1510–089, which are almost unresolved for baselines in a range of 350-477 km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are selected, fringe-fitted, calibrated, and compared for their amplitudes. We find that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combination of two steps of 2-bit quantization in KVN observing systems and characteristics of Daejeon correlator.

GAMIT/GLOBK를 활용한 통합기준점 성과 정확도 분석 (Accuracy Analysis of Unified Control Point Coordinate Using GAMIT/GLOBK Software)

  • 조재명;윤홍식;이동하
    • 한국측량학회지
    • /
    • 제33권2호
    • /
    • pp.103-110
    • /
    • 2015
  • 본 논문에서는 통합기준점의 통합망 조정을 위해 학술용 망조정 소프트웨어에 대해 비교하고, 전국 단위로 통합망 조정을 실시하였다. 기존 통합기준점의 평면좌표 결정에서는 연도별로 다른 소프트웨어를 사용하였기 때문에 측량 시점과 데이터처리 해석 방법에서 오차가 발생하였으며, 이러한 오차를 줄이기 위해 다년간에 걸쳐 관측한 세션별 관측망을 하나의 망으로 구성하여 통합망 조정을 수행하였다. 통합망 조정을 위해서 Quasi-Observation Combination Analysis(QOCA)와 Global Kalman filter VLBI and GPS analysis program(GLOBK)를 비교·분석하였으며, 최종적인 통합망 조정 처리에는 GLOBK를 사용하여 단일 망조정을 실시하였다. 전국 단위의 통합망 조정을 실시한 결과, 수직방향의 RMSE는 ±0.03m 로서 다소 크게 나타났지만, 수평방향의 RMSE는 ±0.006m로서 기존결과와 근사한 결과를 얻을 수 있었다.

Performance Analysis of the First Korean Satellite Laser Ranging System

  • Choi, Man-Soo;Lim, Hyung-Chul;Choi, Eun-Jung;Park, Eunseo;Yu, Sung-Yeol;Bang, Seong-Cheol;Kim, Tae-Keun;Kim, Young-Rok;Kim, Dong-Jin;Seong, Kipyung;Ka, Neung-Hyun;Choi, Cer-Hee;Hwang, Joo-Yeon;Kucharski, Daniel;Han, In-Woo;Nah, Jakyoung;Jang, Jung-Guen;Jang, Bi-Ho;Lee, Sang-Jung
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권3호
    • /
    • pp.225-233
    • /
    • 2014
  • The first Korean satellite laser ranging (SLR) system, Daedeok SLR station (DAEK station) was developed by Korea Astronomy and Space Science Institute (KASI) in 2012, whose main objectives are space geodesy researches. In consequence, Korea became the $25^{th}$ country that operates SLR system supplementing the international laser tracking network. The DAEK station is designed to be capable of 2 kHz laser ranging with precision of a few mm both in daytime and nighttime observation of satellites with laser retro-reflector array (LRA) up to the altitude of 25,000 km. In this study, characteristics and specifications of DAEK station are investigated and its data quality is evaluated and compared with International Laser Ranging Service (ILRS) stations in terms of single-shot ranging precision. The analysis results demonstrated that the DAEK station shows good ranging performance to a few mm precision. Currently, the DAEK station is under normal operations at KASI headquarters, however, it will be moved to Sejong city in 2014 to function as a fundamental station for space geodesy researches in combination with other space geodesy systems (GNSS, VLBI, DORIS, etc.).