• Title/Summary/Keyword: VLBI Data

Search Result 106, Processing Time 0.025 seconds

A Study on the Digital Filter Design for Radio Astronomy Using FPGA (FPGA를 이용한 전파천문용 디지털 필터 설계에 관한 기본연구)

  • Jung, Gu-Young;Roh, Duk-Gyoo;Oh, Se-Jin;Yeom, Jae-Hwan;Kang, Yong-Woo;Lee, Chang-Hoon;Chung, Hyun0Soo;Kim, Kwang-Dong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.62-74
    • /
    • 2008
  • In this paper, we would like to propose the design of symmetric digital filter core in order to use in the radio astronomy. The function of FIR filter core would be designed by VHDL code required at the Data Acquisition System (DAS) of Korean VLBI Network (KVN) based on the FPGA chip of Vertex-4 SX55 model of Xilinx company. The designed digital filter has the symmetric structure to increase the effectiveness of system by sharing the digital filter coefficient. The SFFU(Symmetric FIR Filter Unit) use the parallel processing method to perform the data processing efficiently by using the constrained system clock. In this paper, therefore, for the effective design of SFFU, the Unified Synthesis software ISE Foundation and Core Generator which has excellent GUI environment were used to overall IP core synthesis and experiments. Through the synthesis results of digital filter core, we verified the resource usage is less than 40% such as Slice LUT and achieved the maximum operation frequency is more than 260MHz. We also confirmed the SFFU would be well operated without error according to the SFFU simulation result using the Modelsim 6.1a of Mentor Graphics Company. To verify the function of SFFU, we carried out the additional simulation experiments using the pseudo signal to the Matlab software. From the comparison experimental results of simulation and the designed digital FIR filter, we confirmed the FIR filter was well performed with filter's basic function. So we verified the effectiveness of the designed FIR digital filter with symmetric structure using FPGA and VHDL.

  • PDF

Understanding the physical environment of relativistic jet from 3C 279 using its spectral and temporal information

  • Yoo, Sung-Min;Lee, Sang-Sung;An, Hongjun;Kim, Sang-Hyun;Lee, Jee Won;Hodgson, Jeffrey A.;Kang, Sincheol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.35.3-35.3
    • /
    • 2019
  • Blazars are a subclass of active galactic nuclei (AGNs) with relativistic jets aligned with our line of sight. The jet physics is yet to be understood, but can be studied with blazar variability (e.g., flares). The highly variable blazar 3C 279 has shown a general decline of its radio flux density since 2013, but the flux density has been increasing since 2017. To better understand physical properties of 3C 279 related with the flux variations, we analyze multi-frequency new radio data obtained with Korean VLBI Network (KVN), as well as archival data from Owens Valley Radio Observatory (OVRO) and Submillimeter Array (SMA). We measure the radio spectral variability and infer the relativistic jet properties of 3C 279. The high-cadence OVRO and SMA observations are used to construct detailed light curves of the source, and KVN data supplement the spectral coverage and allow us to locate the spectral break frequencies precisely. In this talk, we present our analysis results and interpret them using a blazar jet model.

  • PDF

Magnetic Field Strengths of Flaring Region in the Jet of CTA 102

  • Kim, Sang-Hyun;Lee, Sang-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.32.1-32.1
    • /
    • 2021
  • We present the magnetic field strengths of CTA 102 using multi-frequency data at 2.6-343.5 GHz in order to study the physical origins of radio flares. The observations at 22 and 43 GHz were conducted using the single-dish radio telescopes of the Korean VLBI Network (KVN) from December 2012 until May 2018 (MJD 56200-58400). We used multi-frequency data obtained from the Effelsberg 100-m, OVRO 40-m, Metsähovi 14-m, IRAM 30-m, SMA, ALMA, and VLBA telescopes. During the period of the observations, two major flares (R1 and R2) are seen clearly at 15 and 37 GHz during MJD 57500-57800 and MJD 58000-58300, respectively. The source shows typical variability with time-scales ranging from 20-161 days at 15 GHz. The variability Doppler factor is in the range of 11.51-31.23. The quasi-simultaneous radio data are used to investigate the synchrotron spectrum of the source, finding that the synchrotron radiation is self-absorbed. The turnover frequency and the peak flux density of the synchrotron self-absorption (SSA) spectra are in ranges of 38.06-167.86 GHz and 1.49-10.38 Jy, respectively. From the SSA spectra, magnetic field strengths are estimated to be < 10 mG. The equipartition magnetic field strengths are larger than the SSA magnetic field strengths by a factor of > 100. This indicates that the radio flares may be related to a particle energy-dominated emission region.

  • PDF

Phase and Amplitude Drift Research of Millimeter Wave Band Local Oscillator System

  • Lee, Chang-Hoon;Je, Do-Heung;Kim, Kwang-Dong;Sohn, Bong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • In this paper, we developed a local oscillator (LO) system of millimeter wave band receiver for radio astronomy observation. We measured the phase and amplitude drift stability of this LO system. The voltage control oscillator (VCO) of this LO system use the 3 mm band Gunn oscillator. We developed the digital phase locked loop (DPLL) module for the LO PLL function that can be computer-controlled. To verify the performance, we measured the output frequency/power and the phase/amplitude drift stability of the developed module and the commercial PLL module, respectively. We show the good performance of the LO system based on the developed PLL module from the measured data analysis. The test results and discussion will be useful tutorial reference to design the LO system for very long baseline interferometry (VLBI) receiver and single dish radio astronomy receiver at the 3 mm frequency band.

Statistical analysis of Anomalous Refraction on KVN sites

  • Lee, Jeong Ae;Byun, Do-Young;Sohn, Bong Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.101.1-101.1
    • /
    • 2014
  • The fluctuation of VLBI visibility phase can be occurred, predominantly caused by the irregular distribution and motion of water vapor in the atmosphere at high frequencies (>1GHz). This radio-seeing effect shows up on filled-aperture telescopes as an anomalous refraction (AR). This can be shown as if the antenna pointing-offset increases, in other words the apparent displacement of radio sources from its nominal position happens. We carried out the single-dish observations on KVN sites in order to check the effect of AR from 2010 to 2014. Orion KL, U Her, and R Leo were observed with 1second sampling time at 22.235GHz and 43.122GHz simultaneously. Each source was observed with the tracking mode for 30 minutes per a source. We analyzed the structure function, power spectrum and Allan variance of the data according to a day and a night, a season and observatories. Finally, we can infer that the AR effect depends on the atmospheric environment, especially tropospheric turbulence.

  • PDF

IMAGING SIMULATIONS FOR THE KOREAN VLBI NETWORK(KVN) (한국우주전파관측망(KVN)의 영상모의실험)

  • Jung, Tae-Hyun;Rhee, Myung-Hyun;Roh, Duk-Gyoo;Kim, Hyun-Goo;Sohn, Bong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • The Korean VLBI Network (KVN) will open a new field of research in astronomy, geodesy and earth science using the newest three Elm radio telescopes. This will expand our ability to look at the Universe in the millimeter regime. Imaging capability of radio interferometry is highly dependent upon the antenna configuration, source size, declination and the shape of target. In this paper, imaging simulations are carried out with the KVN system configuration. Five test images were used which were a point source, multi-point sources, a uniform sphere with two different sizes compared to the synthesis beam of the KVN and a Very Large Array (VLA) image of Cygnus A. The declination for the full time simulation was set as +60 degrees and the observation time range was -6 to +6 hours around transit. Simulations have been done at 22GHz, one of the KVN observation frequency. All these simulations and data reductions have been run with the Astronomical Image Processing System (AIPS) software package. As the KVN array has a resolution of about 6 mas (milli arcsecond) at 220Hz, in case of model source being approximately the beam size or smaller, the ratio of peak intensity over RMS shows about 10000:1 and 5000:1. The other case in which model source is larger than the beam size, this ratio shows very low range of about 115:1 and 34:1. This is due to the lack of short baselines and the small number of antenna. We compare the coordinates of the model images with those of the cleaned images. The result shows mostly perfect correspondence except in the case of the 12mas uniform sphere. Therefore, the main astronomical targets for the KVN will be the compact sources and the KVN will have an excellent performance in the astrometry for these sources.

Improvement of Residual Delay Compensation Algorithm of KJJVC (한일상관기의 잔차 지연 보정 알고리즘의 개선)

  • Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Oh, Chung-Sik;Jung, Jin-Seung;Chung, Dong-Kyu;Oyama, Tomoaki;Kawaguchi, Noriyuki;Kobayashi, Hideyuki;Kawakami, Kazuyuki;Ozeki, Kensuke;Onuki, Hirohumi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.136-146
    • /
    • 2013
  • In this paper, the residual delay compensation algorithm is proposed for FX-type KJJVC. In case of initial version as that design algorithm of KJJVC, the integer calculation and the cos/sin table for the phase compensation coefficient were introduced in order to speed up of calculation. The mismatch between data timing and residual delay phase and also between bit-jump and residual delay phase were found and fixed. In final design of KJJVC residual delay compensation algorithm, the initialization problem on the rotation memory of residual delay compensation was found when the residual delay compensated value was applied to FFT-segment, and this problem is also fixed by modifying the FPGA code. Using the proposed residual delay compensation algorithm, the band shape of cross power spectrum becomes flat, which means there is no significant loss over the whole bandwidth. To verify the effectiveness of proposed residual delay compensation algorithm, we conducted the correlation experiments for real observation data using the simulator and KJJVC. We confirmed that the designed residual delay compensation algorithm is well applied in KJJVC, and the signal to noise ratio increases by about 8%.

MONITORING OBSERVATIONS OF H2O AND SiO MASERS TOWARD POST-AGB STARS

  • Kim, Jaeheon;Cho, Se-Hyung;Yoon, Dong-Hwan
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.261-288
    • /
    • 2016
  • We present the results of simultaneous monitoring observations of $H_2O$ $6_{1,6}-5_{2,3}$ (22GHz) and SiO J=1-0, 2-1, 3-2 maser lines (43, 86, 129GHz) toward five post-AGB (candidate) stars, using the 21-m single-dish telescopes of the Korean VLBI Network. Depending on the target objects, 7 - 11 epochs of data were obtained. We detected both $H_2O$ and SiO maser lines from four sources: OH16.1-0.3, OH38.10-0.13, OH65.5+1.3, and IRAS 19312+1950. We could not detect $H_2O$ maser emission toward OH13.1+5.1 between the late OH/IR and post-AGB stage. The detected $H_2O$ masers show typical double-peaked line profiles. The SiO masers from four sources, except IRAS 19312+1950, show the peaks around the stellar velocity as a single peak, whereas the SiO masers from IRAS 19312+1950 occur above the red peak of the $H_2O$ maser. We analyzed the properties of detected maser lines, and investigated their evolutionary state through comparison with the full widths at zero power. The distribution of observed target sources was also investigated in the IRAS two-color diagram in relation with the evolutionary stage of post-AGB stars. From our analyses, the evolutionary sequence of observed sources is suggested as OH65.5+1.3${\rightarrow}$OH13.1+5.1${\rightarrow}$OH16.1-0.3${\rightarrow}$OH38.10-0.13, except for IRAS 19312+1950. In addition, OH13.1+5.1 from which the $H_2O$ maser has not been detected is suggested to be on the gateway toward the post-AGB stage. With respect to the enigmatic object, IRAS 19312+1950, we could not clearly figure out its nature. To properly explain the unusual phenomena of SiO and $H_2O$ masers, it is essential to establish the relative locations and spatial distributions of two masers using VLBI technique. We also include the $1.2-160{\mu}m$ spectral energy distribution using photometric data from the following surveys: 2MASS, WISE, MSX, IRAS, and AKARI (IRC and FIS). In addition, from the IRAS LRS spectra, we found that the depth of silicate absorption features shows significant variations depending on the evolutionary sequence, associated with the termination of AGB phase mass-loss.

THE EVOLUTIONARY STAGE OF H II REGION AND SPECTRAL TYPES OF MASSIVE STARS FROM KINEMATICS OF H2O MASERS IN W51 MAIN

  • Cho, Jae-Sang;Kan-Ya, Yukitoshi;Byun, Yong-Ik;Kurayama, Tomoharu;Choi, Yoon-Kyung;Kim, Mi-Kyoung
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.41-54
    • /
    • 2010
  • We report relative proper motion measurements of $H_{2}O$ masers in massive star-forming region W51 Main, based on data sets of VLBI observations for $H_{2}O$ masers at 22 GHz with Japanese VERA telescopes from 2003 to 2006. Data reductions and single-beam imaging analysis are to measure internal kinematics of maser spots and eventually to estimate the three-dimensional kinematics of $H_{2}O$ masers in W51 Main. Average space motions and proper motion measurements of $H_{2}O$ masers are given both graphical and in table formats. We find in this study that W51 Main appears to be associated with hyper-compact H II region with multiple massive proto-stars whose spectral types are of late O.

ISM Properties and Star Formation Activities in IC 10 : 2D Cross Correlation Analysis of Multi-wavelength data

  • Kim, Seongjoong;Lee, Bumhyun;Oh, Se-Heon;Chung, Aeree;Rey, Soo-Chang;Jung, Teahyun;Kang, Miju
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.31.3-32
    • /
    • 2015
  • We present the physical properties of star forming regions in IC 10 obtained from Korea VLBI Network (KVN) 22GHz, the Submillimeter Array (SMA) CO, Very Large Array (VLA) HI 21cm, optical (U, B, V and H-alpha), and Spitzer infrared observations. IC 10 is a nearby (~0.7Mpc) irregular blue compact dwarf (BCD) galaxy which is likely to be experiencing an intense and recent burst of star formation. This nearby infant system showing high star formation rate but low metallicity (<20% of that of the Sun) provides critical environment of interstellar medium (ISM) under which current galactic star formation models are challenged. To make quantitative analysis of the ISM in the galaxy, we apply 2D cross-correlation technique to the multi-wavelength data for the first time. By cross-correlating different tracers of star formation, dust and gas phases in IC 10 in a two dimensional way, we discuss the gas properties and star formation history of the galaxy.

  • PDF