• Title/Summary/Keyword: VIVO

Search Result 8,120, Processing Time 0.031 seconds

Pharmacokinetic Modeling and Simulation of the Carrier-Mediated Hepatic Transport of Organic Anions (음이온계 약물의 간수송과정에 있어서 담체매개 수송의 약물동력학적 모델링 및 시뮬레이션)

  • 이준섭;강민희;김묘경;이명구;정석재;심창구;정연복
    • YAKHAK HOEJI
    • /
    • v.47 no.2
    • /
    • pp.110-119
    • /
    • 2003
  • The purpose of the present study was to kinetically investigate the carrier-mediated uptake in the hepatic transport of organic anions, and to simulate the ″in vivo counter-transport″ phenomena, using kinetic model which was developed in this study. The condition that the mobility of carrier-ligand complex is greater than that of free carrier is not essential for the occurrence of ″counter-transport″ phenomenon. To examine the inhibitory effects on the initial uptake of a ligand by the liver, it is necessary to judge whether the true counter-transport mechanism (trans-stimulation) is working or not. The initial plasma disappearance curves of a organic anion were then kinetically analyzed based on a flow model, in which the ligand is eliminated only from the peripheral compartment (liver compartment). Moreover, ″in vive counter-transport″ phenomena were simulated based on the perfusion model which incorporated the carrier-mediated transport and the saturable intracellular binding. The ″in vivo counter-transport″ phenomena in the hepatic transport of a organic anion were well demonstrated by incorporating the carrier-mediated process. However, the ″in vivo counter-transport″ phenomena may be also explained by the enhancement of back diffusion due to the displacement of intracellular binding. In conclusion, one should be more cautious in interpreting data obtained from so-called ″in vivo counter-transport″ experiments.

In Vivo Blood Compatibility of PU-PEO-SO3 as Coating Material for Blood Sac of Left Ventricular Assist Device ( LVAD) (좌심실보조장치의 혈액주머니용 코팅재료로서 PU-PEO-SO3의 in vivo 혈액적합성에 관한 연구)

  • 한동근;김종원
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.19-26
    • /
    • 1994
  • Sulfonated poly (ethyleneoxide)-grafted polyurethane (PU-PEO-$SO_3$) prepared by bulk modification was coated on a blood sac for electrohydraulic left ventricular assist device (ELVAD) implanted in dogs and its in vivo blood compatibility on shear stress was studied as compared with untreated Po. The effect of the wall shear stress on the protein adsorption unlike platelet adhesion is dependent on the surface characteristics of the material, although less proteins seem to be adsorbed in the region of the high shear stress. The thickness of total proteins adsorbed on PU-PEO-SOJ (400 ${\AA}$) by trans¬mission electron microscopy(TEM) was considerably lower than that of untreated PU(l,000~1,600 ${\AA}$), but PU-PEO-$SO_3$ showed high albumin adsorption, low fibrinogen and IgG adsorption, and low platelet adhesion as compared with untreated PU, suggesting that PU-PEO-$SO_3$ is more in vivo blood compatible. Therefore, it appears that such a blood compatible PU-PEO-$SO_3$ is useful for blood contacting biomaterials including artificial organs.

  • PDF

Anticardiovascular Diseases Effects of Fermented Garlic and Fermented Chitosan

  • Kim, Hyun-Kyoung;Lee, Jeong-Hun
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.109-115
    • /
    • 2018
  • Garlic is a medicinal plant used throughout the world for its anti-inflammatory, antioxidant, and antiplatelet activities. Chitosan is a natural polysaccharide obtained from chitin, and derivatives of chitosan have been shown to inhibit platelet aggregation and adhesion. We hypothesized that fermented preparations of these products may possess stronger antiplatelet effects than the non-fermented forms owing to the increased bioavailability of the bioactive compounds produced during fermentation. Therefore, we compared these compounds via in vitro and ex vivo platelet aggregation assays by using standard light transmission aggregometry and ex vivo granule secretions from rat platelets. We found that fermented preparations exerted more potent and significant inhibition of platelet aggregation both in vitro and ex vivo. Likewise, ATP release from dense granules of platelets was also significantly inhibited in fermented preparation-treated rat platelets compared to that in non-fermented preparation-treated ones. We concluded that fermented preparations exerted more potent effects on platelet function both in vitro and ex vivo, possibly as a result of the increased bioavailability of active compounds produced during fermentation. We therefore suggest that fermented products may be potent therapeutics against platelet-related CVDs and can be used as antiplatelet and antithrombotic agents.

Evaluation of the anti-Toxoplasma gondii Activity of Hederagenin in vitro and in vivo

  • Zhang, Run-Hui;Jin, Runhao;Deng, Hao;Shen, Qing-Kun;Quan, Zhe-Shan;Jin, Chun-Mei
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.3
    • /
    • pp.297-301
    • /
    • 2021
  • Toxoplasma gondii infection is widespread worldwide, not only posing a serious threat to human food safety and animal husbandry, but also endangering human health. The selectivity index was employed to measure anti-T. gondii activity. Hederagenin (HE) exhibited potent anti-T. gondii activity and low cytotoxicity. For this reason, HE was selected for in vivo experiments. HE showed 64.8%±13.1% inhibition for peritoneal tachyzoites in mice, higher than spiramycin 56.8%±6.0%. Biochemical parameters such as alanine aminotransferase, aspartate aminotransferase, glutathione, and malondialdehyde, illustrated that HE was a good inhibitor of T. gondii in vivo. This compound was also effective in relieving T. gondii-induced liver damage. Collectively, it was demonstrated that HE had potential as an anti-T. gondii agent.

The Extract of Couroupita guianensis Aubl. Ameliorates Benign Prostatic Hyperplasia In Vitro and In Vivo

  • Kim, Yun Na;Kim, Na-Hyun;Souliya, Onevilay;Uddin, Salah;Lee, Sang Woo;Kim, Soo-Yong;Choi, Sangho;Heo, Jeong-Doo;Jeong, Eun Ju
    • Natural Product Sciences
    • /
    • v.27 no.4
    • /
    • pp.274-279
    • /
    • 2021
  • The therapeutic effects of the leaves of Couroupita guianensis, a large tropical tree in the family of Lecythidaceae improving testosterone-induced Benign Prostatic Hyperplasia (BPH) were tested in vitro and in vivo. In BPH rats induced by castration and testosterone treatment, the prostate index was improved in groups administered with the extracts of C. guianensis extracted with 50%-, 100%-ethanol or boiling water, which was comparable with positive control, finasteride. The extract C. guianensis leaves showed significant inhibition on the expressions of type 2 5-alpha reductase (5αR) in RWPE-1 human prostatic epithelial cells, and effectively attenuated the expressions of androgen receptor, type 2 5αR and proliferating cell nuclear antigen in LNCap human prostatic adenocarcinoma cells. The leaves of C. guianensis that exerted evident suppression on BPH-related biomarkers in vitro and improvement of prostate index in vivo has a potential therapeutic use for the treatment of BPH.

Therapeutic applications of gene editing in chronic liver diseases: an update

  • Shin, Ji Hyun;Lee, Jinho;Jung, Yun Kyung;Kim, Kyeong Sik;Jeong, Jaemin;Choi, Dongho
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.251-258
    • /
    • 2022
  • Innovative genome editing techniques developed in recent decades have revolutionized the biomedical research field. Liver is the most favored target organ for genome editing owing to its ability to regenerate. The regenerative capacity of the liver enables ex vivo gene editing in which the mutated gene in hepatocytes isolated from the animal model of genetic disease is repaired. The edited hepatocytes are injected back into the animal to mitigate the disease. Furthermore, the liver is considered as the easiest target organ for gene editing as it absorbs almost all foreign molecules. The mRNA vaccines, which have been developed to manage the COVID-19 pandemic, have provided a novel gene editing strategy using Cas mRNA. A single injection of gene editing components with Cas mRNA is reported to be efficient in the treatment of patients with genetic liver diseases. In this review, we first discuss previously reported gene editing tools and cases managed using them, as well as liver diseases caused by genetic mutations. Next, we summarize the recent successes of ex vivo and in vivo gene editing approaches in ameliorating liver diseases in animals and humans.

In vivo and in vitro sperm production: An overview of the challenges and advances in male fertility restoration

  • Zahra Bashiri;Seyed Jamal Hosseini;Maryam Salem;Morteza Koruji
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.3
    • /
    • pp.171-180
    • /
    • 2024
  • Male infertility can be caused by genetic anomalies, endocrine disorders, inflammation, and exposure to toxic chemicals or gonadotoxic treatments. Therefore, several recent studies have concentrated on the preservation and restoration of fertility to enhance the quality of life for affected individuals. It is currently recommended to biobank the tissue extracted from testicular biopsies to provide a later source of spermatogonial stem cells (SSCs). Another successful approach has been the in vitro production of haploid male germ cells. The capacity of SSCs to transform into sperm, as in testicular tissue transplantation, SSC therapy, and in vitro or ex vivo spermatogenesis, makes them ideal candidates for in vivo fertility restoration. The transplantation of SSCs or testicular tissue to regenerate spermatogenesis and create embryos has been achieved in nonhuman mammal species. Although the outcomes of human trials have yet to be released, this method may soon be approved for clinical use in humans. Furthermore, regenerative medicine techniques that develop tissue or cells on organic or synthetic scaffolds enriched with bioactive molecules have also gained traction. All of these methods are now in different stages of experimentation and clinical trials. However, thanks to rigorous studies on the safety and effectiveness of SSC-based reproductive treatments, some of these techniques may be clinically available in upcoming decades.

The Evaluation of in Vivo Antifungal Activities and Toxicities of 6-[(N-4-Chlorophenyl)amino]-7-Chloro-5,8-Quinolinediones (6-[(N-4-클로로페닐)아미노-7-클로로-5,8-퀴놀린디온의 in vivo 항진균 작용 및 독성평가)

  • 유충규;김동현;윤여표;이병무;허문영;장성재;김효정;박윤미
    • YAKHAK HOEJI
    • /
    • v.39 no.4
    • /
    • pp.417-426
    • /
    • 1995
  • 6-[(N-4-Chlorophenyl)amino]-7-chloro-5,8-quinolinedione (RCK20) was tested for antifungal activities, in vivo, against Candida albicans. RCK20 was compared vath ketoconazole and fluconazole in the treatment of systemic infection with Candida albicans in normal rats. The therapeutic potential of RCK20 had been assessed by evaluating their activities (survival rate) against systemic infections with in normal mice with Candida albicans. RCK20 improved survival rates as well as ketokonazole. RCK20 had ED$_{50}$. 0.25$\pm$0.18 mg/kg but ketoeonazole and fluconazole had ED$_{50}$, 8.00$\pm$0.73, 10$\pm$0.43 mg/kg respectively. Activities of RCK20 showed superior to that of ketoconazole and fluconazole. Intraperitoneauy administered RCK20 at the ED$_{50}$, 0.25 mg/kg for 7days and 14days reduced Candida albicans colony count in the kidneys and livers as well as ketoconazole and fluconazole at these ED$_{50}$, 8.00 and 10 mg/kg. Acute oral toxicity studies of RCK20 were carried out in ICR mice of both sexes. These acute oral toxicities of RCK20 were low and LD$_{50}$ values were over 2.850 mg/kg in ICR mice. The Genotoxicities of RCK20 had been evaluated. RCK20 was negative in Ames test with Salmonella typhimurium (TA98 and TA100). The clastogenicity was tested on the RCK20 with in vivo mouse micronucleus assay. RCK20 did not show any clastogenic effect in mouse peripheral blood and was negative in mouse micronucleus assay. These results indicate that RCK20 has no genotoxic potential under these experimental condition.

  • PDF

Variation of the Regenerated Plantlets from in Vitro Culture of Neoregeria carorinae 'Tricolor' and in Vivo Growth of Regenerated Plantlets (네오레게리아 기내배양시 변이발생과 기외 생육)

  • 정향영;한봉희;신학기;김의영
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.5
    • /
    • pp.273-276
    • /
    • 1995
  • In vitro propagation of Neoregeria carorinae 'Tricolor' was achieved by using immature flowers and lateral buds, and the plantlets from tissue culture were transplanted and cultivated in greenhouse. The picking times of explants to decrease disappearance of stripes, and in vivo the growth and flowering of regenerated plantlets as influenced by in vivo healed nun were investigated. The normal plantlet were obtained at a frequency of 67%, in the culture of immature flowers picked at 4 weeks after flower bud differentiation, while all leaf stripes disappeared in the culture of immature flowers picked 1 and 5 weeks after flower bud differentiation. In vivo growth of plantlet from immature flower buds was better than those from lateral buds, and the flowering of 27.8% showed in the greenhouse culture of plantlet from immature culture, but the plantlets from lateral buds did not flower at all. The plantlets rooted on the medium with 0.5 mg/L IBA were the most favorable in green house culture, and the kinds and concentrations of auxin in vitro did not have any influence on variation of plane cultured in greenhouse.

  • PDF

Genotoxicological Safety of Gamma-Irradiated Salted and Fermented Anchovy Sauce (감마선 조사된 멸치액젓의 유전독성학적 안전성 평가)

  • 육홍선;차보숙;김동호;이주운;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1192-1200
    • /
    • 2004
  • Gamma irradiations at 5 or 10 kGy were applied to salted and fermented anchovy sauce, for improving the hygiene Quality and evaluating the genotoxicological safety. In vitro genotoxicological safety of irradiated sauces was evaluated by Salmonella Typhimurium (TA98, TA100, TAI535 and TAI537) and E. coli WP2 uvrA, reversion assay, SOS chromotest (Escherichia coli PQ37), and chromosome aberration test (Chinese hamster lung fibroblast cells) in the absence or presence of an exogenous metabolizing system (S9 mix). The gamma-irradiated samples were not significantly different from nonirradiated-control for three in vitro tests (p<0.05). :In vivo micronucleus test using ICR mice (male) was not significantly different from the control at p<0.05. The salted and fermented anchovy sauce exposed to 5 or 10 kGy-gamma ray revealed negative results in these three in vitro mutagenetic tests and in vivo micronucleus test upto 50,000 $\mu$g/plate, respectively. The results indicated that 5 or 10 kGy gamma-irradiated salted and fermented anchovy sauces did not show any mutagenicity.