최근 Panorama와 360° 영상이 대표되는 몰입형 미디어 콘텐츠의 활용이 증가하고 있다. 일반적인 카메라 한 대를 통해서 해당 콘텐츠를 생성하기에는 시야각이 제한되기 때문에, 다수의 카메라로 촬영한 영상을 넓은 시야각을 갖는 하나의 영상으로 합성하는 영상 스티칭이 주로 사용되고 있다. 그러나 촬영하는 카메라 간의 시차(Parallax)가 크다면 스티칭 영상에서 시차 왜곡이 발생할 수 있고, 이는 사용자의 콘텐츠 몰입을 제한하기 때문에 시차 왜곡을 극복할 수 있는 영상 스티칭 기술이 필요하다. 시차 왜곡을 극복하기 위한 기존의 Seam Optimization 기반 영상 스티칭 방법은 사물의 위치 정보를 반영하기 위하여 에너지 함수나 객체 세그먼트 정보를 활용하고 있지만, 초기 Seam 생성 위치, 배경 정보, 사물 검출기의 성능 그리고 사물의 배치 등의 제한 사항으로 인해 기술의 적용이 제한될 수 있다. 이에 본 논문에서는 딥러닝 기반 사물 검출을 활용하여 사물의 종류에 따라 다르게 설정한 가중치 값을 시각적 인지 에너지 값에 더함으로써, 기존 기술의 제한 사항을 극복할 수 있는 영상 스티칭 방법을 제안하고자 한다.
디지털 카메라와 캠코더의 보급이 증가함에 따라 일반 사용자들의 UCC(User Created Contents) 역시 일반화 되고 있다. 그러나 이에 따른 사생활 침해 또한 증가하고 있다. UCC는 인터넷 포탈 서비스를 통해 공유될 뿐 아니라 DVD(Digital Versatile/Video Disk)와 같은 저장매체(Recordable Media, 이하 Media)를 이용하여 보관된다. 포탈 서비스를 이용해서 콘텐츠를 게시하는 경우 포탈 시스템이 제공하는 사용자 인증 및 불법 다운로드 제어 기술을 이용하여 사생활 침해를 부분적으로 막을 수 있다. Media의 경우도 불법복제 제어기술을 채택하고 있지만, Media의 도난 또는 분실로 인한 콘텐츠 유출과 사생활 침해를 막을 수 있는 방법이 현재로서는 제공되지 않고 있다. 그러므로 Media를 이용하여 개인 콘텐츠를 관리하는 경우에도 사생활 침해를 막을 수 있는 추가적인 보안 기술의 연구가 필요하다. 본 논문에서는 Media 보안을 위해 제정된 AACS(Advanced Access Content System)의 Framework을 살펴보고 개인 콘텐츠의 접근을 제어할 수 있는 개선된 AACS 보안 Framework을 제안한다.
본 논문에서는 오리와 같은 유해조류에 의한 양식장의 피해를 방지하기 위해서 머신러닝 기반 해상용 드론 개발을 목적으로 한다. 기존 드론은 공중에서 새와 충돌하거나 바다에 떨어지는 경우 유실되는 문제점을 해결하기 위해서 해상드론으로 개발하였다. 자율주행으로 작동하는 해상드론이 해상에 나타난 유해조류를 판단하기 위해 CNN기반 머신러닝 학습 알고리즘을 설계하였다. 유해조류의 위치 인식 및 추적을 위해 카메라에 라즈베리파이를 연결하여 관제 PC로 영상을 전송하도록 설계하였다. 모바일 기반 관제 센터에서 미리 GPS 좌표와 연동된 맵을 미리 제작한 후, 유해조류의 위치에 대한 GPS 위치값을 전달받아 설정된 위치로 해상용 드론이 출동하여 유해조류를 퇴치하는 자율주행 기반의 해상용 조류 퇴치 드론 시스템을 설계 및 구현하였다.
본 연구의 목적은 산불진화대원들을 안전하게 하고, 현장 정보를 실시간으로 제공하기 위한 스마트 헬멧을 개발하는 것이다. 산불진화대원용 스마트 헬멧은 카메라, 영상/음성통신 모듈, GPS, Bluetooth 및 LTE 모듈 등을 모두 갖추어 산불진화대원의 안전을 도모하고, 스마트 헬멧을 통해 현장 상황을 실시간으로 전송하고, 양방향 통신이 가능하도록 하였다. 제작된 스마트 헬멧을 이용하여 테스트한 결과 관제센터에서 현장 정보를 수신할 수 있었고, 현장 산불진화대원과 소통을 할 수 있었다. 현장 평가와 사용자 평가를 통해 스마트 헬멧의 개선이 필요함을 확인하였다. 개발된 스마트 헬멧은 산림재해 및 산림산업에 다양하게 사용될 수 있을 것이다.
최근 4차 산업혁명의 영향과 통신매체의 발전으로 다양한 디지털 영상장비가 산업현장에서 사용되고 있다. 영상 데이터는 카메라와 센서로부터 취득되는 과정 및 송수신 과정에서 잡음에 훼손되기 쉬우며, 훼손된 영상은 시스템의 처리과정에 영향을 미치기 때문에 잡음제거가 필수적으로 선행되고 있다. 본 논문에서는 고밀도의 임펄스 잡음에 훼손된 영상을 복원하기 위해 가중치 그래프를 사용한 가중치 필터 알고리즘을 제안하였다. 제안한 알고리즘은 영상의 필터링 마스크 내부의 화소값을 사용하여 가중치 그래프를 구하였으며, 최종 가중치를 필터링 마스크에 적용하여 영상을 복원하였다. 제안하는 알고리즘의 잡음제거 성능을 분석하기 위해 시뮬레이션을 진행하였으며, 확대영상 및 PSNR을 사용하여 기존 방법과 비교하였다. 제안한 알고리즘의 결과 영상은 고밀도 임펄스 잡음을 제거하며 우수한 성능을 보였다.
With the advent of autonomous ships, it is emerging as one of the very important issues not only to operate with a minimum crew or unmanned ships, but also to secure the safety of ships to prevent marine accidents. On-site inspection of the hull is mainly performed by the inspector's visual inspection, and video information is recorded using a small camera if necessary. However, due to the shortage of inspection personnel, time and space constraints, and the pandemic situation, the necessity of introducing an automated inspection system using artificial intelligence and remote inspection is becoming more important. Furthermore, research on hardware and software that enables the automated inspection system to operate normally even under the harsh environmental conditions of a ship is absolutely necessary. For automated inspection systems, it is important to review artificial intelligence technologies and equipment that can perform a variety of hull failure detection and classification. To address this, it is important to classify the hull failure. Based on various guidelines and expert opinions, we divided them into 6 types(Crack, Corrosion, Pitting, Deformation, Indent, Others). It was decided to apply object detection technology to cracks of hull failure. After that, YOLOv5 was decided as an artificial intelligence model suitable for survey and a common hull crack dataset was trained. Based on the performance results, it aims to present the possibility of applying artificial intelligence in the field by determining and testing the equipment required for survey.
본 논문에서는 영상 데이터, 비콘 데이터의 결합을 통해 집단시설에서 출입이 허용된 승인자와 비승인자를 구분하는 시스템을 제안한다. IP 카메라를 통해 수집된 영상 데이터는 YOLOv4를 사용하여 사람 객체를 추출하고, 애플리케이션을 통해 비콘의 신호 데이터(UUID, RSSI)를 수집하여 핑거프린팅 기반의 라디오 맵을 구성한다. 비콘은 신호의 불안전성을 보완해 위치 파악의 정확도를 향상하기 위하여 CNN-LSTM 기반의 학습을 진행한 후 사용자 위치 데이터를 추출한다. 이후 도출된 위치 데이터와 사람 객체가 추출된 영상 데이터를 매핑해 실시간으로 비승인자를 추적한다. 본 논문의 결과로 93.47%의 정확도를 보였으며, 향후 코로나19로 사용이 증가한 QR코드 등의 출입 인증 절차와 융합해 인증 절차를 거치지 않은 사람을 추적하는 확장성까지 기대할 수 있다.
네자리 디지털 숫자를 입력하는 패스워드 방식이 신용카드 승인용 비밀번호, 디지털 도어락 개폐 비밀번호 등으로 널리 활용되고 있다. 하지만 이 패스워드 방식에서는 네자리의 숫자가 손가락 지문이나 버튼의 마모 등으로 쉽게 추측될 수 있어서 보안 상 안전하지 않다. 또한 장기화되는 코로나19 팬데믹으로 인해 인증에서 접촉 방식보다는 비접촉 방식이 점점 더 선호되고 있다. 본 논문에서는 카메라로 촬영된 얼굴의 눈깜빡임 패턴 분석에 기반한 패스워드 생성 방법을 제안한다. 제안 방법은 0부터 9까지(또는 9부터 0까지) 카운팅 되는 신호에 맞춰 행해진 일련의 눈깜빡임 동작을 분석하고 코드화하여 십진수 네자리를 생성한다. 제안 방법은 패스워드 노출 위험이 유발되는 키패드 입력이나 과장된 행동을 필요로 하지 않는다는 장점이 있다.
국내에서는 4차 산업혁명의 핵심기술인 드론 등을 이용하여 사회기반시설(SOC)를 디지털화하는 한국판뉴딜 정책을 추진 중에 있고, 국외에서도 열화상카메라 등 융복합센서를 드론에 탑재하여 다양한 산업 분야에서 활용하는 사례가 증가하고 있다. 본 연구에서는 고속도로 교면포장 공사에서 포장 품질을 개선하기 위하여 드론에 열화상 카메라를 탑재하여 포장 작업 구간에 대한 온도 측정 및 검증을 수행하였다. 기존의 방식인 레이저 온도계를 활용한다면 포장 온도를 부분적으로만 측정이 가능하지만, 제안된 방식을 활용하면 포장 작업 구간 전체에 대한 실시간 온도 모니터링 뿐 아니라 온도 분포 확인을 통한 균일성 검증이 가능한 것을 확인하였다. 제안된 방식을 현장에 적용한다면 도로 개방 시기(포장 표면온도≦40℃)에 대한 오판의 가능성을 낮춰줌에 따라 고속도로 포장 품질관리 제고 및 신속한 교통 개방 시기 결정이 가능할 것으로 기대된다.
전방 낙하물과 같은 돌발상황이 발생했을 때 신속하고 적절한 정보 제공은 도로 위 이용자들의 편의를 가져다주고 2차 교통사고 또한 효과적으로 줄일 수 있다. 도로 상의 돌발상황은 현재 국내에서 루프 검지기나 CCTV 등 ITS 기반 검지 체계를 사용하여 주로 검지하고 있다. 이러한 방식은 검지기의 검지 구간에서의 도로 위 데이터만을 얻을 수 있다. 때문에, 기존 ITS 기반 검지체계의 공간적 음영구간에서 돌발상황을 찾아내기 위하여 새로운 검지 수단이 필요하다. 이에 본 연구에서는 차량 내 설치된 단말기에서 촬영된 영상으로부터 돌발상황을 검지 및 분류하는 ResNet 기반 알고리즘을 제안한다. 국내 고속도로 전방 주행영상을 수집하였고, 돌발상황 유형을 클래스로 정의하여 각 데이터를 라벨링한 후, 제안한 알고리즘으로 데이터를 학습시켰다. 학습 결과, 개발한 알고리즘은 데이터 수가 상대적으로 적었던 일부 클래스를 제외하고 정의한 돌발상황 클래스에 대하여 높은 검지율을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.