• Title/Summary/Keyword: VHTR

Search Result 106, Processing Time 0.044 seconds

High-Temperature Structural Analysis on the Small-Scale PHE Prototype using Weld Properties (용접물성치를 고려한 소형 공정열교환기 시제품의 고온구조해석)

  • Song, Kee-Nam;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • A PHE (Process Heat Exchanger) in a nuclear hydrogen system is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature gas cooled Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. Previous research on the high-temperature structural analysis of the small-scale PHE prototype had been performed only using parent material properties. In this study, high-temperature structural analysis using weld properties in weld zone was performed and the analysis results compared with the previous research.

DEVELOPMENT AND VALIDATION OF THE AEROSOL TRANSPORT MODULE GAMMA-FP FOR EVALUATING RADIOACTIVE FISSION PRODUCT SOURCE TERMS IN A VHTR

  • Yoon, Churl;Lim, Hong Sik
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.825-836
    • /
    • 2014
  • Predicting radioactive fission product (FP) behaviors in the reactor coolant system and the containment of a nuclear power plant (NPP) is one of the major concerns in the field of reactor safety, since the amount of radioactive FP released into the environment during the postulated accident sequences is one of the major regulatory issues. Radioactive FPs circulating in the primary coolant loop and released into the containment are basically in the form of gas or aerosol. In this study, a multi-component and multi-sectional analysis module for aerosol fission products has been developed based on the MAEROS model [1,2], and the aerosol transport model has been developed and verified against an analytic solution. The deposition of aerosol FPs to the surrounding structural surfaces is modeled with recent research achievements. The developed aerosol analysis model has been successfully validated against the STORM SR-11 experimental data [3], which is International Standard Problem No. 40. Future studies include the development of the resuspension, growth, and chemical reaction models of aerosol fission products.

Elastic High-temperature Structural Analysis on the Small Scale PHE Prototype Considering the Pipeline Stiffness (배관 강성을 고려한 소형 공정열교환기 시제품에 대한 탄성 고온구조해석)

  • Song, Kee-nam;Kang, J-H;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.48-53
    • /
    • 2011
  • A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. In this study, as a part of the evaluation on the high-temperature structural integrity of the small-scale PHE prototype, we carried out macroscopic high-temperature structural analysis of the small-scale PHE prototype under the gas loop test conditions considering the pipeline stiffness.

High-Temperature Structural Analysis Model of the Process Heat Exchanger for Helium Gas Loop (II) (헬륨가스루프 시험용 공정열교환기에 대한 고온구조해석 모델링(II))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Chan-Soo;Hong, Seong-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1455-1462
    • /
    • 2010
  • PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established the helium gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype to be tested in the loop. In this study, as part of the hightemperature structural-integrity evaluation of the PHE prototype, which is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal expansion analysis of the PHE prototype. The results obtained in this study will be used to design the performance test setup for the PHE prototype.

Current Status of Hot Steam Corrosion Evaluation of the Candidate Materials for Intermediate Heat Exchangers of HTSE System (고온전기분해시스템의 열교환기 후보재료에 대한 고온증기 환경에서의 부식평가 현황)

  • Kim, Minu;Kim, Dong Hoon;Jang, Changheui;Yoon, Duk-Joo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Nuclear hydrogen production using high temperature heat of a very high temperature reactor(VHTR) is one of the most attractive ways of mass hydrogen production without greenhouse gas emission. In many countries, sulfur-iodine(S-I) thermochemical process and high temperature steam electrolysis(HTSE) process are being investigated. In such processes, corrosion behavior of Intermediate heat exchanger materials are the most critical issues. Especially in a HTSE system, several heat exchangers will be facing hot steam conditions. In this paper, the status of high temperature corrosion researches in hot steam and supercritical water conditions are reviewed in view of the implication to HTSE conditions. Based on the review, test condition and plan of the hot steam corrosion of the candidate materials are formulated and described in some details along with the schematics of the test set-up. The test results and subsequent evaluation will be used in development of a interface system between the HTSE hydrogen production system and the VHTR.

  • PDF

A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production (수소 생산을 위한 SI Cycle 공정에서의 중간 열교환 공정 모사 연구)

  • Shin, Jae Sun;Cho, Sung Jin;Choi, Suk Hoon;Qasim, Faraz;Lee, Heung N.;Park, Jae Ho;Lee, Won Jae;Lee, Euy Soo;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.459-466
    • /
    • 2014
  • SI Cyclic process is one of the thermochemical hydrogen production processes using iodine and sulfur for producing hydrogen molecules from water. VHTR (Very High Temperature Reactor) can be used to supply heat to hydrogen production process, which is a high temperature nuclear reactor. IHX (Intermediate Heat Exchanger) is necessary to transfer heat to hydrogen production process safely without radioactivity. In this study, the strategy for the optimum design of IHX between SI hydrogen process and VHTR is proposed for various operating pressures of the reactor, and the different cooling fluids. Most economical efficiency of IHX is also proposed along with process conditions.

Evaluation of High-Temperature Structural Integrity Using Lab-Scale PCHE Prototype (SUS316L 로 제작된 실험실 수준 인쇄기판형 열교환기 시제품의 고온구조건전성 평가)

  • Song, Kee Nam;Hong, Sung Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1189-1194
    • /
    • 2013
  • The Intermediate Heat Exchanger (IHX) of a Very High Temperature Reactor (VHTR) is a core component that transfers the high heat of $950^{\circ}C$ generated in the VHTR to a hydrogen production plant. The Korea Atomic Energy Research Institute manufactured a lab-scale prototype of a Printed Circuit Heat Exchanger (PCHE) as a candidate for an IHX. In this study, as a part of a high-temperature structural integrity evaluation of the lab-scale PCHE prototype made of SUS316L, we carried out high temperature structural analysis modeling and macroscopic thermal and elastic structural analysis for the lab-scale PCHE prototype under helium experimental loop (HELP) test conditions as a precedent study prior to the performance test in HELP.