• 제목/요약/키워드: VGRF

검색결과 10건 처리시간 0.015초

Comparative Study of the Biomechanical Factors in Range of Motion, Muscle Activity, and Vertical Ground Reaction Force between a Forward Lunge and Backward Lunge

  • Park, Samho;Huang, TianZong;Song, Junyoung;Lee, Myungmo
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권2호
    • /
    • pp.98-105
    • /
    • 2021
  • Objective: The purpose of this study was to examined the kinematic relationship and differences through the range of motion (ROM), muscle activity, and vertical ground reaction force (VGRF) during forward and backward lunge movements, which are effective in improving muscle strength and balance ability of the lower extremities, and to provide clinical information on more efficient lunge movements. Design: Cross-sectional study Methods: Fifteen adult males who met the selection criteria were tested for their dominant feet.Forward and backward lunges were then performed, and the ROM, muscle activity, and VGRF were measured for kinematic analysis during the lunge movement.The differences betweenthe forward lunge and backward lunge intervention were examined using a paired t-test. Results: A significant increase in the ROM of the knee and ankle was observed during the forward and backward lunges (p<0.05). In addition, in terms of the muscle activity, the peak values of the vastus medialis oblique (VMO) and VGRF also showed a significant increase in the forward lunge compared to the backward lunge (p<0.05). Conclusions: This study showed an increase in VGRF peak value, knee and ankle ROM, and VMO muscle activity during forward lunge. Based on these results, it is considered necessary to apply differently depending on the direction of progress in consideration of the musculoskeletal situation and physical ability during the lunge movement.

수직 반작용력 측정 장치 개발(II) (A Development of Device for Measurement of Vertical Ground Reaction Force(II))

  • 박진
    • 한국운동역학회지
    • /
    • 제13권3호
    • /
    • pp.341-354
    • /
    • 2003
  • The purpose of this study was to develop the uniaxial force plate system which is measured by the vertical force. The VGRF(vertical ground reaction force) 1.0 was composed of 2 bath digital scales, 2 indicaters, and analyzing software. This system was newly renovated to VGRF 2,0 which are 2 industrial digital scales, 2 adjustable indicators, and enforced analyzing software. Changes of the new system were as follows. First, the height of the plate was 75% lower than before. Second, sensing ability of the load cell was changed from 90 - 0.05kg to 300 - 0.1kg. Third, the speed of data processing was changed from 17 per second to 60 per second. Fourth, analyzing software was enforced to develop and calculate the data. For the test of the system, two different types(bare foot, high-heeled shoes) gait was adopted. highly skilled female walker(23yrs, height 165cm, body mass 46.8kg) participated for the experimental study. During the dynamic performance(gait analysis), the data of each load cell were very similar to the previous studies. Specifically, bare foot walking had less vertical force than high-heeled shoes. Consequently, VGRF 2.0 can sense the general dynamic movements as well as static load conditions.

뛰어 내리기 동작 시 신발과 뛰어 내리는 높이가 지면반력과 충격감소에 미치는 효과 (Effects of shoe and landing heights on impact force and shock attenuation during landing activities)

  • 유연주
    • 한국운동역학회지
    • /
    • 제13권3호
    • /
    • pp.355-366
    • /
    • 2003
  • 본 연구의 목적은 뛰어 내리기 동작 시 신발과 뛰어 내리는 높이가 지면반력과 충격감소에 미치는 영향을 연구하였다. 10명의 건강한 피험자가 신발 또는 맨발로 네 가지 다른 높이에서 (30, 45, 60 &75 cm) 다섯 번의 뛰어 내리기를 시도하였다. 수직지면반력(VGRF), 영상분석, 경골과 앞이마의 가속도가 함께 측정되었다. 첫 번째 정점의 수직지면반력 (VGRF1)은 75cm의 높이에서 맨발보다는 신발을 신은 상황에서 더 큰 값을 보여 주었다. 두 번째 정점의 수직지면반력 (VGRF2)은 신발을 신은 것보다는 맨발의 조건에 더 큰 값을 보여 주었다. 앞 이마의 가속도 (AccHead)는 높이와 지면에 거의 변화를 보이지 않았다. 첫 번째 정점의 경골 가속도 (AccHead)는 높이와 지면에 거의 변화를 보이지 않았다. 첫 번째 정점의 경골 가속도 (AccTibia1)는 맨발의 조건보다 신발을 신은 조건에서 더 크게 나타났다. 반면에 두 번째 정점의 경골 가속도 (AccTibia2)는 특히 60 그리고 75cm조건에서 신발을 신었을 때 보다 맨발일 때 더 큰 값을 보여 주었다. 충격감소지수 (AtteIndex)는 모든 높이에서 맨발의 조건이 신발을 신은 조건 보다 통계적으로 유의하게 높게 나타났다. 결론적으로 뛰어 내리기 동작 시 신발이 지면반력을 최소화시키고 충격을 감소시키는데 부가적인 완충물로 제공되었음을 뒷받침 해준다.

달리기 시도 수 증가에 따른 VGRF 신호 성분의 Variability 분석 (Analysis of Variability for the Components of VGRF Signal via Increasing the Number of Attempt during Running)

  • 류지선
    • 한국운동역학회지
    • /
    • 제17권1호
    • /
    • pp.129-134
    • /
    • 2007
  • The purpose of this study was to determine the variability of components of the vertical ground reaction force signal to seek the suitable number of attempt datum to be analyzed during running at 2m/s and 4m/s. For this study, six subjects (height mean:$174.5{\pm}4.4cm$, weight $671.5{\pm}116.4N.$, age:$25.0{\pm}yrs.$) were selected and asked to run at least 3 times each run condition randomly. FFT(fast Fourier transform) was used to analyze the frequency domain analysis of the vertical ground reaction forces signal and an accumulated PSD (power spectrum density) was calculated to reconstruct the certain signal. To examine the deviation of the vertical ground reaction between signals collected from an different number of attempt, variability of frequency, magnitude of passive peak, time up to the passive peak and maximum load rate were determined in a coefficient of variance. The variability analysis revealed that when analyze the vertical reaction force components at 2m/s speed running, which belongs to slow pace relatively, it would be good to calculate these components from signal of one attempt, but 4m/s speed running needs data collected from two attempts to decrease the deviation of signal between attempts. In summary, when analyzing the frequency and passive peak of the vertical reaction force signal during the fast run, it should be considered the number of attempt.

지면반력분석기를 이용한 골프 스윙의 분석 평가 방법 (A Method for Analyzing and Evaluating the Golf Swing Using the Force Platform Data)

  • 성낙준
    • 한국운동역학회지
    • /
    • 제20권2호
    • /
    • pp.213-219
    • /
    • 2010
  • The purpose of this study is developing a method to analyze and evaluate a golf swing motion using the ground reaction force (GRF) data. Proper weight shifting is essential for a successful shot in golf swing and this could be evaluated by means of the forces between the feet and ground. GRF during the swing were measured from 15 low-handicapped male golfers including professionals. Four clubs(driver, iron 3, iron 5, and iron 7) were selected to analyze the differences due to different characteristics of club. Swings of each subject were taken using a high speed video camera and GRF data were taken simultaneously by two AMTI force platforms. To simplify the GRF data, forces of the three major component of GRF(vertical, lateral, anterior-posterior force) at 10 predefined temporal events for each trial were selected and the mean of each event were calculated and evaluated. Analyzed vertical GRF (VGRF) data could be divided into two different styles, one-legged and two legged. One-legged style shows good weight transfer to the target leg and most of the previous study shows this style as a typical pattern of good players. Therefore the data from the iron 5 swing obtained from 10 one-legged style golfers are provided as criteria for the evaluation of a swing.

110 m 허들경기의 제 1허들에 대한 우수선수와 비우수선수의 운동역학적 요인 비교 (The Biomechanical Analysis of the First Hurdling in Men's 110m Hurdle between Skilled and Less-Skilled Hurdle Players)

  • 길호종;윤석훈
    • 한국운동역학회지
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 2013
  • The purpose of this study was to provide a fundamental information for enhancing 110m hurdlers' performance through conducting comparative biomechanical analysis between Skilled Group(SG) and Less-Skilled Group(LSG) those who are not in the first section of 110m hurdles. To persue the purpose of this study, total of 10 hurdlers participated. Then they were divided into two groups; SG: five hurdlers who have won awards with 14-second range at 2010 national track and field event, and LSG: five hudlers who did not win any awards with 15-second range. Three-dimensional motion analysis with 12 infrared cameras(Oqus 300, Qualisys) and 1 force plate(Type 9286AA, Kistler) was performed. From this study following conclusions were obtained. 1) For the overall runtime, SG revealed faster elapsed time than that of LSG. 2) At E4, LSG showed greater trunk angle than that of SG. 3) At E3 LSG revealed higher angular velocities than that of SG. 4) No significant differences was found for AP GRF between groups but LSG showed greater VGRF than that of SG.

드롭랜딩 시 높이에 따른 슬개대퇴 압박력의 차이 (The Differences in Patellofemoral Compression Force with Different Height)

  • 조준행;김경훈;문곤성;이성철
    • 한국운동역학회지
    • /
    • 제21권3호
    • /
    • pp.335-343
    • /
    • 2011
  • Patellofemoral pain syndrome is the most common problem involving the knee, accounting for 25% of knee injuries. Repetitive, overuse activities cause increased force at the patellofemoral joint, resulting in pain during flexion and extension activities. Most research have been conducted in exploring the patellofemoral compressive force in gait, squat and lunges, even though in real cases, possibilities in landing exist. The purpose of this study was to compare the differences in patellofemoral compressive force according to two different height. Sixteen collegiate male students(age: 22.25 ${\pm}$ 3.30 yrs, height: 177.25 ${\pm}$ 4.44 cm, weight: 77.50 ${\pm}$ 8.18 kg) were chosen. The subjects performed drop landings in 45 cm, 60 cm. The findings demonstrated that higher height showed peak knee extension moment, quadriceps contraction force, patellofemoral compressive force with increased VGRF. Regarding the patellofemoral joint compressive force, it increased by quadriceps contraction force with knee flexion during landing, yet, it showed no difference in maximal knee flexion. To minimize patellofemoral joint stress and reduce the likelihood of developing PFPS, we recommend that predesigned quadriceps and hip muscle group strengthening are needed during conditioning and training.

드롭랜딩 시 backpack 중량 변화에 따른 충격 흡수 기전 (Shock Attenuation Mechanism in Drop Landing According to the Backpack Weight Changes)

  • 최치선;남기정;신인식;서정석;은선덕;김석범
    • 한국운동역학회지
    • /
    • 제16권2호
    • /
    • pp.25-35
    • /
    • 2006
  • The purpose of this study was to investigate the shock attenuation mechanisms while varying the loads in a backpack during drop landing. Ten subjects (age: $22.8{\pm}3.6$, height: $173.5{\pm}4.3$, weight: $70.4{\pm}5.2$) performed drop landing under five varying loads (0, 5kg. 10kg. 20kg. 30kg). By employing two cameras (Sony VX2100) the following kinematic variables (phase time, joint rotational angle and velocity of ankle, knee and hip) were calculated by applying 2D motion analysis. Additional data, i.e. max vertical ground force (VGRF) and acceleration, was acquired by using two AMTI Force plates and a Noraxon Inline Accelerometer Sensor. Through analysing the power spectrum density (PSD), drop landing patterns were classified into four groups and each group was discovered to have a different shock attenuation mechanism. The first pattern that appeared at landing was that the right leg absorbed most of the shock attenuation. The second pattern to appear was that subject quickly transferred the load from the right leg to the left leg as quickly as possible. Thus, this illustrated that two shock attenuation mechanisms occurred during drop landing under varying load conditions.

Vertical Ground Reaction Force Asymmetry in Prolonged Running

  • Ryu, Ji-Seon
    • 한국운동역학회지
    • /
    • 제28권1호
    • /
    • pp.29-35
    • /
    • 2018
  • Objective: The purpose of this study was to determine the asymmetry of vertical ground reaction force (GRF) components between dominant and non-dominant legs in rested and fatigued states in prolonged running. Method: Twenty healthy men, heel strikers, were included (age: $24.00{\pm}5.0years$; height: $176.1{\pm}6.0cm$; body mass: $69.0{\pm}6.0kg$) in this study. Subjects ran on an instrumented treadmill for 130 minutes. During treadmill running, GRF data (1,000 Hz) were collected for 20 strides at five minutes (rested) and 125 minutes (fatigued) running while they were unaware of collecting data. Asymmetry indexes (ASI) were calculated to quantify the asymmetry magnitude in rested and fatigued states. Paired t-test was used to verify the differences between dominant and non-dominant legs in rested and fatigued states. In addition, one-way repeated measure analysis of variance was applied for comparison of ASI of both states. The level of significance was set at p < .05. Results: Passive force peak magnitude, loading rate, and impulse affecting the development of running injury were found significantly greater in dominant leg than in non-dominant leg at rested state (p < .05). However, passive force peak time and active force peak magnitude were found significantly different between legs in fatigued state (p < .05). To determine changes in percentage of asymmetry between legs in both states, ASI was used. ASI for all variables increased in fatigued state; however, no significant differences were found between both states. Conclusion: This study found that fatigue did not affect differences in vertical GRF between dominant and non-dominant legs and asymmetry changes.

An Attention-based Temporal Network for Parkinson's Disease Severity Rating using Gait Signals

  • Huimin Wu;Yongcan Liu;Haozhe Yang;Zhongxiang Xie;Xianchao Chen;Mingzhi Wen;Aite Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권10호
    • /
    • pp.2627-2642
    • /
    • 2023
  • Parkinson's disease (PD) is a typical, chronic neurodegenerative disease involving the concentration of dopamine, which can disrupt motor activity and cause different degrees of gait disturbance relevant to PD severity in patients. As current clinical PD diagnosis is a complex, time-consuming, and challenging task that relays on physicians' subjective evaluation of visual observations, gait disturbance has been extensively explored to make automatic detection of PD diagnosis and severity rating and provides auxiliary information for physicians' decisions using gait data from various acquisition devices. Among them, wearable sensors have the advantage of flexibility since they do not limit the wearers' activity sphere in this application scenario. In this paper, an attention-based temporal network (ATN) is designed for the time series structure of gait data (vertical ground reaction force signals) from foot sensor systems, to learn the discriminative differences related to PD severity levels hidden in sequential data. The structure of the proposed method is illuminated by Transformer Network for its success in excavating temporal information, containing three modules: a preprocessing module to map intra-moment features, a feature extractor computing complicated gait characteristic of the whole signal sequence in the temporal dimension, and a classifier for the final decision-making about PD severity assessment. The experiment is conducted on the public dataset PDgait of VGRF signals to verify the proposed model's validity and show promising classification performance compared with several existing methods.