• 제목/요약/키워드: VE supplementation

검색결과 22건 처리시간 0.016초

Effects of β-glucan with vitamin E supplementation on the physiological response, litter performance, blood profiles, immune response, and milk composition of lactating sows

  • Tae Wook, Goh;Jinsu, Hong;Hong Jun, Kim;Sun Woo, Kang;Yoo Yong, Kim
    • Animal Bioscience
    • /
    • 제36권2호
    • /
    • pp.264-274
    • /
    • 2023
  • Objective: This study was conducted to evaluate the effects of β-glucan with vitamin E supplementation on the physiological response, litter performance, blood profiles, immune response, and milk composition of lactating sows. Methods: A total of 50 multiparous F1 sows (Yorkshire×Landrace) with an average body weight (BW) of 233.6±4.30 kg and an average parity of 4.00±0.307 and their litters were used in this experiment. All sows were allotted to one of five treatments, taking into consideration BW, backfat thickness, and parity in a completely randomized design with 10 replicates. The experimental diets included a corn-soybean meal-based basal diet with or without 0.1% or 0.2% β-glucan and 110 IU vitamin E/kg diet. Results: All treatments added with β-glucan or vitamin E were statistically higher in the average daily feed intake (ADFI) of lactating sows compared to those of the control (Diet, p<0.01). Additionally, the ADFI of lactating sows was significantly higher in the groups supplemented with 0.1% β-glucan compared to 0.2% β-glucan (BG, p<0.01). There was an increasing trend in piglet weight at weaning (BG, p = 0.07), litter weight at the 21st day of lactation (BG, p = 0.07) and litter weight gain (BG, p = 0.08) in groups supplemented with 0.1% β-glucan. The addition of 110 IU vitamin E/kg diet increased vitamin E concentration significantly in lactating sows (VE, p<0.01) and exhibited a trend for higher concentrations of vitamin E (VE, p = 0.09) in piglets. Adding 0.1% β-glucan compared to 0.2% β-glucan induced a decrease in the concentration of tumor necrosis factor-α in lactating sows (BG, p = 0.06) and in piglets (BG, p = 0.09) on the 21st day of lactation. There were no significant differences in the milk composition of sows. Conclusion: Adding 0.1% β-glucan and 110 IU vitamin E/kg to a lactating sow's diet was beneficial to the growth performance of piglets by leading to an increase in the feed intake of sows and efficiently supplying vitamin E to both the sows and piglets.

Degradation kinetics of vitamins in premixes for pig: effects of choline, high concentrations of copper and zinc, and storage time

  • Yang, Pan;Wang, Hua Kai;Zhu, Min;Li, Long Xian;Ma, Yong Xi
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.701-713
    • /
    • 2021
  • Objective: The present work was undertaken to evaluate the effects of storage time, choline chloride, and high concentrations of Cu and Zn on the kinetic behavior of vitamin degradation during storage in two vitamin premixes and four vitamin-trace mineral (VTM) premixes. Methods: Two vitamin premixes (with or without 160,000 mg/kg of choline) were stored at 25℃ and 60% humidity. Besides, four VTM premixes were used to evaluate the effects of choline (0 vs 40,000 mg/kg) and trace minerals (low CuSO4+ZnO vs high CuSO4+ZnO) on vitamin stability in VTM premixes stored in room, and the VTM premixes were stored in room temperature at 22℃. Subsamples from each vitamin and VTM premix were collected at 0, 1, 2, 3, 6, and 12 months. The retention of vitamin A (VA), vitamin D3 (VD3), vitamin E (VE), vitamin K3 (VK3), vitamin B1 (VB1), vitamin B2 (VB2), vitamin B3 (VB3), vitamin B5 (VB5), and vitamin B6 (VB6) in vitamin premixes and VTM premixes during storage was determined. The stability of vitamins in vitamin premixes and VTM premixes was determined and reported as the residual vitamin activity (% of initial) at each sampling point. Results: The effect of choline on VK3 retention was significant in vitamin premixes (p<0.05). The negative effect of storage time was significant for the retentions of VD3, VK3, VB1, VB2, VB5, and VB6 in vitamin premix (p<0.05). For VTM premixes, negative effect of storage time was significant (p<0.05) for the losses of vitamin in VTM premixes. Choline and high concentrations of Cu and Zn significantly increased VA, VK3, VB1, and VB2 loss during storage (p<0.05). The supplementation of high concentrations of Cu and Zn significantly decreased the concentrations of VD3 and VB6 (p<0.05) in VTM premixes at extended storage time. Conclusion: The maximum vitamin stability was detected in vitamin and VTM premixes containing no choline or excess Cu and Zn. The results indicated that extended storage time increased degradation of vitamin in vitamin or VTM premixes. These results may provide useful information for vitamin and VTM premixes to improve the knowledge of vitamin in terms of its stability.