• Title/Summary/Keyword: VDS Travel Time

Search Result 11, Processing Time 0.02 seconds

A Path Travel Time Estimation Study on Expressways using TCS Link Travel Times (TCS 링크통행시간을 이용한 고속도로 경로통행시간 추정)

  • Lee, Hyeon-Seok;Jeon, Gyeong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.209-221
    • /
    • 2009
  • Travel time estimation under given traffic conditions is important for providing drivers with travel time prediction information. But the present expressway travel time estimation process cannot calculate a reliable travel time. The objective of this study is to estimate the path travel time spent in a through lane between origin tollgates and destination tollgates on an expressway as a prerequisite result to offer reliable prediction information. Useful and abundant toll collection system (TCS) data were used. When estimating the path travel time, the path travel time is estimated combining the link travel time obtained through a preprocessing process. In the case of a lack of TCS data, the TCS travel time for previous intervals is referenced using the linear interpolation method after analyzing the increase pattern for the travel time. When the TCS data are absent over a long-term period, the dynamic travel time using the VDS time space diagram is estimated. The travel time estimated by the model proposed can be validated statistically when compared to the travel time obtained from vehicles traveling the path directly. The results show that the proposed model can be utilized for estimating a reliable travel time for a long-distance path in which there are a variaty of travel times from the same departure time, the intervals are large and the change in the representative travel time is irregular for a short period.

The Development of Freeway Travel-Time Estimation and Prediction Models Using Neural Networks (신경망을 이용한 고속도로 여행시간 추정 및 예측모형 개발)

  • 김남선;이승환;오영태
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.47-59
    • /
    • 2000
  • The purpose of this study is to develop travel-time estimation model using neural networks and prediction model using neural networks and kalman-filtering technique. The data used in this study are travel speed collected from inductive loop vehicle detection systems(VDS) and travel time collected from the toll collection system (TCS) between Seoul and Osan toll Plaza on the Seoul-Pusan Expressway. Two models, one for travel-time estimation and the other for travel-time Prediction were developed. Application cases of each model were divided into two cases, so-called, a single-region and a multiple-region. because of the different characteristics of travel behavior shown on each region. For the evaluation of the travel time estimation and Prediction models, two Parameters. i.e. mode and mean were compared using five-minute interval data sets. The test results show that mode was superior to mean in representing the relationship between speed and travel time. It is, however shown that mean value gives better results in case of insufficient data. It should be noted that the estimation and the Prediction of travel times based on the VDS data have been improved by using neural networks, because the waiting time at exit toll gates can be included for the estimation of travel time based on the VDS data by considering differences between VDS and TCS travel time Patterns in the models. In conclusion, the results show that the developed models decrease estimation and prediction errors. As a result of comparing the developed model with the existing model using the observed data, the equality coefficients of the developed model was average 88% and the existing model was average 68%. Thus, the developed model was improved minimum 17% and maximum 23% rather then existing model .

  • PDF

Real-time Travel Time Estimation Model Using Point-based and Link-based Data (지점과 구간기반 자료를 활용한 실시간 통행시간 추정 모형)

  • Yu, Jeong-Whon
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.155-164
    • /
    • 2008
  • It is critical to develop a core ITS technology such as real-time travel time estimation in order that the efficient use of the ITS implementation can be achieved as the ITS infrastructure and relevant facilities are broadly installed in recent years. The provision of travel time information in real-time allows travellers to make informed decisions and hence not only the traveller's travel utilities but also the road utilization can be maximized. In this paper, a hybrid model is proposed to combine VDS and AVI which have different characteristics in terms of space and time dimensions. The proposed model can incorporate the immediacy of VDS data and the reality of AVI data into one single framework simultaneously. In addition, the solution algorithm is made to have no significant computational burden so that the model can be deployable in real world. A set of real field data is used to analyze the reliability and applicability of the proposed model. The analysis results suggest that the proposed model is very efficient computationally and improves the accuracy of the information provided, which demonstrates the real-time applicability of the proposed model. In particular, the data fusion methodology developed in this paper is expected to be used more widely when a new type of traffic data becomes available.

  • PDF

Determining Optimal Aggregation Interval Size for Travel Time Estimation and Forecasting with Statistical Models (통행시간 산정 및 예측을 위한 최적 집계시간간격 결정에 관한 연구)

  • Park, Dong-Joo
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.3
    • /
    • pp.55-76
    • /
    • 2000
  • We propose a general solution methodology for identifying the optimal aggregation interval sizes as a function of the traffic dynamics and frequency of observations for four cases : i) link travel time estimation, ii) corridor/route travel time estimation, iii) link travel time forecasting. and iv) corridor/route travel time forecasting. We first develop statistical models which define Mean Square Error (MSE) for four different cases and interpret the models from a traffic flow perspective. The emphasis is on i) the tradeoff between the Precision and bias, 2) the difference between estimation and forecasting, and 3) the implication of the correlation between links on the corridor/route travel time estimation and forecasting, We then demonstrate the Proposed models to the real-world travel time data from Houston, Texas which were collected as Part of the Automatic Vehicle Identification (AVI) system of the Houston Transtar system. The best aggregation interval sizes for the link travel time estimation and forecasting were different and the function of the traffic dynamics. For the best aggregation interval sizes for the corridor/route travel time estimation and forecasting, the covariance between links had an important effect.

  • PDF

Fusion Strategy on Heterogeneous Information Sources for Improving the Accuracy of Real-Time Traffic Information (실시간 교통정보 정확도 향상을 위한 이질적 교통정보 융합 연구)

  • Kim, Jong-Jin;Chung, Younshik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.67-74
    • /
    • 2022
  • In recent, the number of real-time traffic information sources and providers has increased as increasing smartphone users and intelligent transportation system facilities installed at roadways including vehicle detection system (VDS), dedicated short-ranged communications (DSRC), and global positioning system (GPS) probe vehicle. The accuracy of such traffic information would vary with these heterogeneous information sources or spatiotemporal traffic conditions. Therefore, the purpose of this study is to propose an empirical strategy of heterogeneous information fusion to improve the accuracy of real-time traffic information. To carry out this purpose, travel speed data collection based on the floating car technique was conducted on 227 freeway links (or 892.2 km long) and 2,074 national highway links (or 937.0 km long). The average travel speed for 5 probe vehicles on a specific time period and a link was used as a ground truth measure to evaluate the accuracy of real-time heterogeneous traffic information for that time period and that link. From the statistical tests, it was found that the proposed fusion strategy improves the accuracy of real-time traffic information.

Development of a traffic simulation model analyzing the effects of highway incidents using the CA(Cellular Automata) model (CA(Cellular Automata) 모형을 이용한 고속도로 돌발상황 영향 분석 교통 시뮬레이션 모형 개발)

  • 천승훈;노정현
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.219-227
    • /
    • 2001
  • In this study, the simulation was constructed using CA(Cellular Automata) rule to analyze the effect of incidents, which was verified using real-time VDS data and data collected on the field. The study analyzed the effect of incidents on highways by the simulation. The result appears to be statistically available with 5% of significance level. In order to analyze the effect of incident, the study classified time period of incidents and types of incidents in relation with traffic volume. Also, the effect of each type of incidents was analyzed in terms of time difference in sectional travel and delay time. In conclusion, little effect of incidents on traffic flow is noticed with light traffic volume but it becomes serious as the traffic volume increases. In addition, the delay happens to appear without incidents as the traffic volume increases over 2000 veh/hour. Also, when incidents happened during 45 minutes, the delay was about 425-722 veh·hour.

  • PDF

A Study of Classification Analysis about Traffic Conditions Using Factor Analysis and Cluster Analysis (요인분석 및 군집분석을 활용한 교통상황 유형 분류분석)

  • Su-hwan Jeong;Kyeung-hee Han;Jaehyun (Jason) So;Choul-ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.65-80
    • /
    • 2023
  • In this study, a classification analysis was performed based on the type of traffic situation. The purpose was to derive the major variable factors that could represent the traffic situation. The TTI(Travel Time Index) was used as a criterion for determining traffic conditions, and analysis was performed using data generally detected by the Vehicle Detecting System(VDS). First, the major factors influencing the traffic situation were selected through factor analysis, and traffic conditions were clustered through a cluster analysis of the major factors. After that, variance analysis for each cluster was performed based on the TTI, and similar clusters were merged to categorize the type of traffic situation. The analysis derived, the maximum queue length and occupancy as major factors that could represent the traffic situation. Through this study, it is expected that efficient management of traffic congestion would be possible by just concentrating on the main variable factors that affect the traffic situation.

A Study on the Spacing Distrubution based on Relative Speeds between Vehicles -Focused on Uninterrupted Traffic Flow- (차량간 상대속도에 따른 차두거리 분포에 관한 연구 -연속류 교통흐름을 중심으로-)

  • Ma, Chang-Young;Yoon, Tae-Kwan;Kim, Byung-Kwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • This study analyzes traffic data which are collected by VDS(Vehicle Detection System) to research the relationship between spacing distribution and vehicles' relative speed. The collected data are relative speed between preceding and following vehicles, passing time and speed. They are also classified by lane and direction. For the result of the analysis, in the same platoon, we figure out that mean of spacing is 40m, which can be a value to determine section A to D. To compare spacing according to time interval, this study splits time intervals to peak hour and non-peak hour by peak hour traffic volume. In conclusion, vehicles in peak hour are in car following because most drive similar speed as preceding vehicle and they have relatively small spacing. On the other hand, non-peak hour's spacing between vehicles is bigger than that of peak hour. This implies driver's behaviors that the less spacing, the more aggressive and want to reduce their travel time in peak hour, whereas most drive easily in non-peak hour and recreational trip purpose because of less time pressure.

Design of Travel Time Forecasting Model Based on TCS Data Characteristics (고속도로 통행료 수납자료의 특성을 반영한 통행시간 예측 모형 설계)

  • Kim, Dong-Keun;Choi, Jin-Woo;Kim, Tae-Min;Park, Jin-Woong;Kim, Hyo-Min;Yang, Young-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.1595-1597
    • /
    • 2011
  • 과거에는 고속도로 상에 일정간격으로 설치하여 운영 중인 VDS(Vehicle Detection System)에서 주기적으로 검지되는 지점자료나 실제로 도로를 주행하면서 교통상황을 측정하는 프로브 차량(Probe Vehicle)들을 이용하여 통행시간을 추정해 왔으나 단순한 현시점에서의 통행시간을 나타내는 점이나 설치구간이 조밀하지 못한 곳에서의 정확성 등 많은 문제점이 있어왔다. 이에 본 연구에서는 고속도로 통행료 수납자료(Toll Collection System)를 출발시각 기준으로 정렬하고, 이를 Fuzzy c-means 클러스터링 기법을 사용하여 고속도로 통행료 수납자료의 특성에 따라 분류한 후 하나의 대푯값으로 추출하여 Kalman Filter 기법에 적용하는 고속도로 통행시간 예측 모형을 설계한다.

A Study on the Possibility of Using the Aerial-Based Vehicle Detection System for Real-Time Traffic Data Collection (항공 기반 차량검지시스템의 실시간 교통자료 수집에의 활용 가능성에 관한 연구)

  • Baik, Nam Cheol;Lee, Sang Hyup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.129-136
    • /
    • 2012
  • In the US, Japan and Germany the Aerial-Based Vehicle Detection System, which collects real-time traffic data using the Unmanned Aerial Vehicle (UAV), helicopters or fixed-wing aircraft has been developed for the last several years. Therefore, this study was done to find out whether the Aerial-Based Vehicle Detection System could be used for real-time traffic data collection. For this purpose the study was divided into two parts. In the first part the possibility of retrieving real-time traffic data such as travel speed from the aerial photographic image using the image processing technique was examined. In the second part the quality of the retrieved real-time traffic data was examined to find out whether the data are good enough to be used as traffic information source. Based on the results of examinations we could conclude that it would not be easy for the Aerial- Based Vehicle Detection System to replace the present Vehicle Detection System due to technological difficulties and high cost. However, the system could be effectively used to make the emergency traffic management plan in case of incidents such as abrupt heavy rain, heavy snow, multiple pile-up, etc.