• Title/Summary/Keyword: VCSEL simulation

Search Result 5, Processing Time 0.019 seconds

Gigabit-capable WDM-PON Using Long-Wavelength VCSEL (장파장 VCSEL을 이용한 Gigabit-capable WDM-PON)

  • 박상민;이승걸;오범환;박세근;이일항
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.119-127
    • /
    • 2004
  • This paper reports on the simulation study of gigabit-capable Passive Optical networks (GPON) using WDM focused on single light source per each channel, and proposes using 1550nm VCSEL for light sources. Proposed system uses high speed direct-modulated light sources, in which the merit is able to maintain a low loss. to support broad bandwidth, and to lower network configuration cost. We conformed simulation study on the transmission of the downstream 2.5Gbit/s, upstream 1.25Gbit/s, 622Mbit/s which was recommended by ITU-T G.984.1. We measured the transmission margin and examined the feasibility of proposed system.

High Power Single Mode Multi-Oxide Layer VCSEL with Optimized Thicknesses and Aperture Sizes of Oxide Layers

  • Yazdanypoor, Mohammad;Emami, Farzin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.167-173
    • /
    • 2014
  • A novel multi-oxide layer structure for vertical cavity surface emitting laser (VCSEL) structures is proposed to achieve higher single mode output power. The structure has four oxide layers with different aperture sizes and thicknesses. The oxide layer thicknesses are optimized simultaneously to reach the highest single mode output power. A heuristic method is proposed for plotting the influence of these variable changes on the operation of optical output power. A comprehensive optical-electrical thermal-gain self-consistent VCSEL model is used to simulate the continuous-wave operation of the multi-layer oxide VCSELs. A comparison between optimized VCSELs with different structures is presented. The results show that by using multi-oxide layers with different thicknesses, higher single-mode optical output power could be achieved in comparison with multi-oxide layer structures with the same thicknesses.

A Study on Low-Current-Operation of 850nm Oxide VCSELs Using a Large-Signal Circuit Model (대신호 등가회로 모델을 이용한 850nm Oxide VCSEL의 저전류 동작 특성 연구)

  • Jang, Min-Woo;Kim, Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.10-21
    • /
    • 2006
  • We have studied the characteristics of oxide VCSELS when their off-current and on-current are kept small in order to find out the possibility of low current operation. A large signal equivalent circuit model has been used. By comparing measured data and simulation results, the parameters of the large signal models are obtained including the capacitances. Using the large signal model, we have investigated the effects of capacitance and on/off currents upon the turn-on/turn-off characteristics and eye diagram. According to the experiment and simulation, the depletion capacitance, which has been neglected, is found to have significant influence on the him-on delay and eye-diagram. Therefore, for high speed and low current operation, the reduction of the depletion capacitance is essential.

Thermal analysis of a VCSEL array with flip-chip bond design (플립칩 본딩 구조의 표면방출레이저 어레이에 대한 열 해석)

  • Kim, Seon-Hoon;Kim, Tae-Un;Kim, Sang-Taek;Ki, Hyun-Chul;Yang, Myung-Hak;Kim, Hyo-Jin;Ko, Hang-Ju;Kim, Hwe-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.415-416
    • /
    • 2008
  • The finite element model was used to simulate the temperature distribution of a arrayed vertical-cavity surface-emitting laser (VCSEL). In this work, the dimension of AlGaAs/GaAs based VCSEL array was $50{\mu}m$ active diameter and $250{\mu}m$ pitch, and AuSn solder of 80wt%Au-20wt%Sn was included to flip-chip bond. The results of the thermal simulation will be applied to predict the thermal cross-talk in high speed parallel optical interconnects.

  • PDF

Optimum thickness of GaAs top layer in AlGaAs-based 850 nm VCSELs for 56 Gb/s PAM-4 applications

  • Yu, Shin-Wook;Kim, Sang-Bae
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.923-931
    • /
    • 2021
  • We studied the influence of GaAs top-layer thickness on the small-signal modulation response and 56 Gb/s four-level pulse-amplitude modulation eye quality of 850 nm vertical-cavity surface-emitting lasers (VCSELs). We considered the proportionality of the gain-saturation coefficient to the photon lifetime. The simulation results that employed the transfer-matrix method and laser rate equations led to the conclusion that the proportionality should be considered for proper explanation of the experimental results. From the obtained optical eyes, we could determine an optimum thickness of the GaAs top layer that rendered the best eye quality of VCSEL. We also compared two results: one result with a fixed gain-saturation coefficient and the other that considered the proportionality. The former result with the constant gain-saturation coefficient demonstrated a better eye quality and a wider optimum range of the GaAs top-layer thickness because the resultant higher damping reduced the relaxation oscillation.