• Title/Summary/Keyword: VCI film

Search Result 7, Processing Time 0.02 seconds

Applicability of Volatile Corrosion Inhibitor and VCI Films for Conservation of Artworks (미술작품의 보존을 위한 기화성 방청제 및 방청필름의 적용성 연구)

  • Beom, Dae Geon;Han, Ye Bin
    • Journal of Conservation Science
    • /
    • v.36 no.2
    • /
    • pp.82-92
    • /
    • 2020
  • Modern artworks are constructed using a variety of materials and techniques. Sculptures, which predominantly consist of metals, usually have different shapes and consist of different material mixtures. The structural and material properties of these sculptures are often controlled by conservation treatment methods. However, the application of existing treatment methods is challenging at times, indicating that more diverse treatment materials and techniques are necessary. Therefore, in this study, a treatment method that employs volatile corrosion inhibitor(VCI) powder, rather than an anti-corrosion solution, for the conservation and management of metal artworks was used. VCI powder and VCI films containing VCI powder were used, and the results obtained confirmed that both of them showed anti-corrosion effect. Only a slight change in the chromaticity of metal samples was observed, and compared to the untreated samples, the application of the VCI powder resulted in a decrease in the rate of corrosion by half. Moreover, VCI film tests revealed that comparing to the untreated or polyethylene film-treated samples, VCI film treatment resulted in a decrease in the occurrence of corrosion compounds. The contact angle, surface energy, and surface electrical resistance were measured, and the evaluation of these surface properties established the anti-corrosion effect of VCI. Additionally, direct application of VCI and VCI films on actual sculptures further confirmed the anti-corrosion effect of VCI.

A Study on the Application of Anti-Corrosion Techniques on the Surface of Oxygen Free Copper (무산소동의 표면부식 방지기술 적용에 관한 연구)

  • Joo, Hyung-Goun;Lee, Dae-Young;Zhang, Da Quan;Lee, Kang-Yong;Al-Hanash, Essam Khamis Ibrahim
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.425-429
    • /
    • 2009
  • The protection for copper tarnish was developed by surface treatment method and volatile corrosion inhibiting (VCI) technology. The performance of surface treatment and VCI material is also examined in simulated test environment. Benzotriazole (BTAH) solution that contained molybdate showed best performance than others. Usage of VCI materials with surface treatment was more effective. The protection film foamed on the surface of copper was investigated by auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). Molybdate does not participate in the formation of the protective film but promotes the passivation effect. This facilitates the stabilization of the cuprous oxide film, and strengthens the adsorption of BTAH.

A Study on the Applicability of Corrosion Inhibitor for Outdoor Copper Alloy

  • Shin, Jeong Ah;Wi, Koang Chul
    • Journal of Conservation Science
    • /
    • v.34 no.4
    • /
    • pp.259-271
    • /
    • 2018
  • Outdoor copper alloy is exposed to the atmospheric environment, accelerating corrosion progress compared with indoor copper alloy. In order to prevent corrosion, the outdoor copper alloy is coated with wax to block external corrosion factors. However, corrosion of the inside of the coating film is highly likely to continue without the internal corrosion prevention treatment. B.T.A, which is used as a copper alloy water-soluble corrosion inhibitor, has a high possibility of being harmful to the human body and is mainly used to treat excavated artifacts. This study had selected the water-soluble corrosion inhibitor, which was easier to use than the existing wax and B.T.A being used in corrosion inhibition treatment for outdoor copper alloy. A comparative study was conducted on B.T.A, which is a water-soluble corrosion inhibitor used on excavated artifacts, and $VCI^{(R)}$, $Rus^{(R)}$, and L-cys, an amino acid corrosion inhibitor, used for tin bronze test pieces. The experimental method was conducted for a certain period of time with the salt, acid, and air pollution affecting the corrosion of outdoor copper alloy. Based on experiment results, it was concluded that the best water - soluble copper alloy corrosion inhibitor in the atmospheric environment is $VCI^{(R)}$. and it could be considered to be applied in replacement of B.T.A due to its low harmfulness. In addition, $VCI^{(R)}$ is judged to serve as a corrosion inhibitor for outdoor copper alloy because it showed the best result even in the outdoor exposure test which is a real atmospheric environment.

A Study on the Application to Anti-corrosive Film of Acryl Emulsion for the Reducing of Environmental Pollutants (환경유해물질 저감을 위한 Acryl emulsion의 방청필름 응용 연구)

  • Lee, S.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.197-202
    • /
    • 2009
  • The high toxicity of wax, oil, varnish and volatile corrosion inhibitor(VCI) corrosion inhibitors lead to an increasing interest in using non-toxic alternatives such as anti-corrosive film. This study aims to investigate the possibility to use acryl based anti-corrosive film as a substitution of toxic corrosion inhibitors. Acryl emulsions were polymerized by several acryl monomers(acrylonitrile(AN), n-butyl acrylate(nBA), methylmethacrylate(MMA) and glycycyl methacrylate(GMA)), non-toxic corrosion inhibitor, crosslinking agents(diethylene glycol dimethacrylate(DEGDA)) and various additives in order to apply substrate of anti-corrosive film. Acryl emulsion for anti-corrosive film(AeACF) as a substrate of corrosion inhibitor film has excellent removal characteristic at above $25^{\circ}C$. The crosslinked by DEGDA in a range of above 4 wt% content anti-corrosive film can easily remove from the metal surface by using hands because it kept a balance of cohesion and adhesion strength. Anti - corrosive performance of AeACF is better than anti-corrosive oil by corrosion rate test, which was measured $54.3mg/dm^2$ day(MDD) and $142.9mg/dm^2$ day, respectively. Anti-corrosive film consisting of acryl monomers and inorganic anti-corrosive ingredients did not emit any toxic pollutants by gas chromatography. Thus it is estimated that acryl based anti-corrosion film can substitute toxic corrosion inhibitors.

Case Study of Intermittent Poor Acceleration Fault Diagnosis by Brake Switch Fault (브레이크 스위치 결함에 의한 간헐적인 가속불량 현상의 고장진단 사례연구)

  • Kim, Sung Mo;Jo, Haeng Deug
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.203-210
    • /
    • 2015
  • This paper investigates the failure of a car with a 2.5-liter CRDi engine of the Hyundai Company. The failure is caused by intermittent poor acceleration while driving. To analyze the cause, we investigated the air intake volume, the fuel injection, and the air-fuel ratio, which were determined to be normal. The brake switch signal error was discovered while analyzing the function that limits the output of the engine. While investigating the cause, we discovered the corrosion of the pins on the connector of the brake switch. We determined that it was generated by soapy water flowing in the solar film. Therefore, the cause of the failure was the brake switch signal errors. Additionally, we determined that ECM was the normal fail-safe mode that implemented the override device for safety during normal acceleration. Based on these results, further solar film experiments must be conducted to fully elucidate the causes.