• Title/Summary/Keyword: VAC

Search Result 226, Processing Time 0.022 seconds

Development of 1.2[kW]Class Fuel Cell Power Conversion System (1.2[kW]급 연료전지용 전력변환장치의 개발)

  • Suh, Ki-Young;Kim, Chil-Ryong;Cho, Man-Chul;Kim, Jung-Do;Yoon, Young-Byun;Kim, Hong-Sin;Park, Do-Hyung;Ha, Sung-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.117-125
    • /
    • 2007
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a DC-DC step-up converter and DC-AC inverter to be used in fuel cell generation system. Therefor, this paper, consists of an isolated DC-DC converter to boost the fuel cell voltage 380[VDC] and a PWM inverter with LC filter to convent the DC voltage to single-phase 220[VAC]. Expressly, The fuel cell system which it proposes DC-DC the efficient converter used PWM the phase transient control law and it depended to portion resonance ZVS switching, loss peek voltage and electric current of realization under make schedule, switching frequency anger and the switch reduction. And mind benevolence it sprouted 2 in stop circuit and it added and a direct current voltage and the electric current where the ingredient is reduced in load side ripple stable under make whom it will be able to supply. Besides the efficiency of 92[%]is obtained over the wide output voltage regulation ranges and load variations. Also, under make over together the result leads simulation and test, the propriety confirmation.

Efficacy and Safety of COVID-19 Vaccines in Children Aged 5 to 11 Years: A Systematic Review (5-11세 소아에서 코로나19 백신의 효능 및 안전성에 대한 체계적 문헌고찰)

  • Choi, Miyoung;Yu, Su-Yeon;Cheong, Chelim;Choe, Young June;Choi, Soo-Han
    • Pediatric Infection and Vaccine
    • /
    • v.29 no.1
    • /
    • pp.28-36
    • /
    • 2022
  • Purpose: To evaluate the efficacy and safety of coronavirus disease 2019 (COVID-19) vaccines in children aged 5-11 years, a rapid systematic review was conducted on published clinical trials of COVID-19 vaccines and studies that analyzed real-world data on adverse events after COVID-19 vaccination. Methods: A systematic search was conducted on medical literature in international (Ovid-MEDLINE) and pre-published literature databases (medRxiv), followed by handsearching up to January 4, 2022. We used terms including COVID-19, severe acute respiratory syndrome coronavirus 2, and vaccines, and the certainty of evidence was graded using the GRADE approach. Results: A total of 1,675 studies were identified, of which five were finally selected. Among the five studies, four consisted of data from clinical trials of each of the four types of COVID-19 vaccines (BNT162b2, mRNA-1273, CoronaVac, and BBIBP-CorV). The remaining study consisted of real-world data on the safety of the BNT162b2 vaccine in children aged 5-11 years. This systematic review identified that COVID-19 vaccines in recipients aged 5-11 years produced a favorable immune response, and were vaccines were effective against COVID-19. The safety findings for the BNT162b2 vaccine in children and early adolescents aged 5-11 years were similar to those data noted in the clinical trial. Conclusions: There is limited data on COVID-19 vaccines in children aged 5-11 years. Consequently continuous and comprehensive monitoring is necessary for the evaluation of the safety and effectiveness of the COVID-19 vaccines.

Implementation of Dedicated Power Line Filter for HEMP Protection (HEMP 보호용 전원선 필터 구현)

  • Kim, Keun-Nam;Lee, Sung-Hwa;Kim, Jin-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.47-52
    • /
    • 2016
  • This paper covers the importance of a dedicated Power Line Filter implementation against HEMP(High altitude ElectroMagnetic Pulse) threats caused by high altitude nuclear detonations. As the PCI test results for E1 short pulse with 2500[A], only HEMP filter obtained the required residual current around 8[A], but others didn't meet below 10[A] on MIL-STD-188-125 PCI regulation. Consequently, the development of a dedicated power line filter turned out to be a essential element in order to protect the power related system against HEMP transient.

Zero Voltage Transition Full Bridge Boost Converter for Single Stage Power Factor Correction (Single Stage 역률보상을 위한 ZVT 풀 브릿지 부스트 컨버터)

  • Song, D.I.;Kwon, S.K.;Cho, J.G.;Back, J,W.;Kim, W.H.;Kim, J.S.;Rim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.351-354
    • /
    • 1996
  • A zero-voltage-transition(ZVT) full bridge (FB) boost converter for single stage power factor correction (PFC) in distributed power system is proposed. A simple auxiliary circuit provides zero-voltage-switching(ZVS) condition to all semiconductor devices without imposing additional voltage and current stresses and loss of PWM capability. The proposed boost converter provides both input power factor correction and direct conversion from $110{\sim}220VAC$ line to 300VDC bus with single power stage. Operational principle, analysis of the proposed converter are described and verified by computer simulation and experimental results from a 1.5 kW, 80 kHz laboratory prototype.

  • PDF

Research on Insulation resistance measurement technique for electrical safety of HEV (HEV의 전기안전을 위한 절연저항 측정기법에 관한 연구)

  • Lee, Ki-Yeon;Kim, Hyang-Kon;Gil, Hyoung-Jun;Kim, Dong-Ook;Kim, Dong-Woo;Moon, Hyun-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.276-278
    • /
    • 2008
  • 본 연구에서는 하이브리드 자동차의 고전원 전기장치 및 고전원 배선에서 인체의 직접 접촉 및 간접접촉에 의한 자전사고틀 방지하기 절연저항의 측정 방법을 제시하였다. 하이브리드 자동차에서 절연저항은 ISO 및 ECE, FMVSS, Attachment 등의 국외규격에서 $100{\Omega}/Vdc$, $500{\Omega}/Vac$ 이상을 유지하도록 규정하고 있다. 하지만 하이브리드 및 전기자동차의 구조에 맞는 절연저항 측정 방법에 대한 정확한 방법이 제시되어 있지 않기 때문에 본 연구에서는 하이브리드 및 전기자동차의 절연저항 측정 방법에 있어 외국의 규격에서 제시하고 있는 방법과 비교를 통하여 실제 차량에서 적용한 수 있는 절연저항 측정 기법을 제시할 것이다.

  • PDF

Study on Development of the Isolation Resistance Measurement System for Hydrogen Fuel Cell Vehicle (수소연료전지자동차용 절연저항 측정시스템 개발에 관한 연구)

  • Lee, Ki-Yeon;Kim, Dong-Ook;Moon, Hyun-Wook;Kim, Hyang-Kon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1068-1072
    • /
    • 2011
  • Hydrogen Fuel Cell Vehicle(HFCV) is system that uses electrical energy of fuel cell stack to main power source, which is different system with other vehicles that use high-voltage, large-current. Isolation performance of this system which is connected with electrical fire and electrical shock is important point. Isolation resistance of electric installation is divided according to working voltage, it follows criterion more than $100{\Omega}$/VDC (or $500{\Omega}$/VAC) about system operation voltage in a hydrogen fuel cell vehicle. Although measurement of isolation resistance in a hydrogen fuel cell vehicle is two methods, it uses mainly measurement by megger. However, the present isolation resistance measurement system that is optimized to use in electrical facilities is unsuitable for isolation performance estimation of a hydrogen fuel cell vehicle because of limit of maximum short current and difference of measurement resolution. Therefore, this research developed the isolation resistance measurement system so that may be suitable in isolation performance estimation of a hydrogen fuel cell vehicle, verified isolation performance about known resistance by performance verification of laboratory level about developed system, and executed performance verification through comparing results of developed system by performance verification of vehicle level with ones of existing megger. Developed system is judged to aid estimation and upgrade of isolation performance in a hydrogen fuel cell vehicle hereafter.

Simulations of Effects of Variable Conductance Throttle Valve on the Characteristics of High Vacuum System

  • Kim, Hyung-Taek;Cho, Han-Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • Thin film electronic devices which brought the current mobile environment could be fabricated only under the high quality vacuum conditions provided by high vacuum systems. Especially for the development of advanced thin film devices, constant high quality vacuum as the deposition pressure is definitely needed. For this purpose, the variable conductance throttle valves were employed to the high vacuum system. In this study, the effects of throttle valve applications on vacuum characteristics were simulated to obtain the optimum design modelling of variable conductance of high vacuum system. Commercial simulator of vacuum system, $VacSim^{(multi)}$, was used on this investigation. Reliability of employed simulator was verified by the simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling were agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve were schematized as the modelling of throttle valve for the constant process-pressure of below $10^{-3}torr$. Simulation results were plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably.

Preparation of High Molecular Weight Atactic Poly(vinyl alcohol) by Photo-induced Bulk Polymerization of Vinyl Acetate

  • Lyoo, Won-Seok;Ha, Wan-Shik
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.108-115
    • /
    • 2001
  • Vinyl acetate was polymerized in ultraviolet-ray initiated bulk system at low temperatures using 2,2-azobis(2,4-dimethylvaleronitrile) (ADMVN) or 2,2-azobis(isobutyronitrile) (AIBN) as the photoinitiator, respectively. High molecular weight (HMW) poly(vinyl alcohol) (PVA) having number-average degree of polymerization ($P_n$) of 3,900-7,800 and syndiotactic diad (S-diad) content of 52.5-54.0% could be prepared by complete saponification of synthesized linear poly(vinyl acetate) (PVAc) having $P_n$ 5,900-9,400 obtained at conversion of below 30%. $P_n$ of PVA using ADMVN was larger than that of PVA using AIBN. On the other hand, conversion of the former was smaller than that of the latter, and it was found that the initiation rate of the ADMVN was lower than that of AIBN. This could be explained by a fact that the rate of photolysis of AIBN is faster than that of ADMVN due to the higher quantum yield or dissociation rate constant of AIBN than that of ADMVN. The $P_n$, syndiotacticity, and whiteness of PVA from PVAc polymerized at lower temperatures were superior to those of PVA from PVAc polymerized at higher temperatures.

  • PDF

A Study on the Design and Control Characteristics for Optimum Operation of the PV System-based ESS (PV System 기반 ESS의 최적운전을 위한 설계 및 제어 특성에 관한 연구)

  • Cha, Insu;Park, Jongbok;Jung, Gyeonghwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • In this study, realize voltage regulation $220Vac{\pm}10%$ or less, frequency fluctuation $60Hz{\pm}1%$ or less over the independent operation and grid-connected operation technologies for power stabilization relates to the ESS designed and manufactured in conjunction with solar installations and solar to compensate the output reduction due to the polarization of the solar module through the polarization prevention technology for preventing the optical module efficiency is lowered, in conjunction with the BMS inverter efficiency was more than 92%, more than 90% of the charging efficiency to the target. This study was designed in conjunction with the ESS solar power plants, grid-connected operation and independent operation, Peak-Cut, it can stabilize the grid via the Peak-Shifting operation

기체의 유량 및 온도 변화에 따른 진공 펌프의 성능 특성 연구

  • Heo, Jung-Sik;Im, Jong-Yeon;In, Sang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.16-16
    • /
    • 2010
  • 반도체 및 LCD 공정이 진행되는 진공 챔버는 유량계, 진공 펌프 및 밸브 등을 이용하여 적절한 공정용 기체와 압력을 제어하게 된다. 공정에 따라 매우 높은 온도를 유지해야 하는 경우도 있다. 챔버 내부의 압력은 유입되는 기체의 시간에 따른 유량 변화에 의하여 주기적으로 변화하게 된다. 이러한 유량 변화는 장기적으로는 결국 펌프의 신뢰성(내구수명)에 영향을 주게 되며, 특히 고유량 및 저유량을 반복하게 되는 공정에 있어서는 더욱 큰 영향을 미치게 된다. 또한 챔버 내부는 다양한 화학적 반응이 일어나며 이러한 공정 기체들의 높은 온도는 결국 챔버에 연결된 펌프의 성능 및 신뢰성에도 영향을 주게 된다. 대부분의 반도체 및 LCD 공정이 이루어지는 압력에서는 전도 및 대류의 열전달 형태보다는 열복사에 의한 영향을 받게 되어 챔버를 적절히 설계한다면 펌프에 직접적으로 전달되는 복사량은 상대적으로 낮고, 펌프에 미치는 영향도 크지 않게 된다. 그러나 압력의 변화에 따라 전도 및 대류의 영향이 커지게 되는 경우에는 펌프 자체 및 성능에 큰 영향을 주게 될 것이다. 터보형 펌프의 국내(KS) 및 국제규격(ISO)의 성능시험방법에는 이러한 온도에 따른 펌프의 성능 특성 변화를 다루고 있지 않으며, 크라이오 펌프인 경우 열복사의 영향에 대한 시험방법이 일부 공개되어 있다[J. Vac. Sci. Technol. A 17(5)]. 본 연구에서는 기체의 유량 및 온도 변화에 따른 진공 펌프의 성능 특성 변화를 고찰하고자 하며, 향후 이러한 시험방법에 대한 표준 절차를 확립하고자 한다.

  • PDF