• Title/Summary/Keyword: V-mask criterion

Search Result 3, Processing Time 0.019 seconds

V-mask Type Criterion for Identification of Outliers In Logistic Regression

  • Kim Bu-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.625-634
    • /
    • 2005
  • A procedure is proposed to identify multiple outliers in the logistic regression. It detects the leverage points by means of hierarchical clustering of the robust distances based on the minimum covariance determinant estimator, and then it employs a V-mask type criterion on the scatter plot of robust residuals against robust distances to classify the observations into vertical outliers, bad leverage points, good leverage points, and regular points. Effectiveness of the proposed procedure is evaluated on the basis of the classic and artificial data sets, and it is shown that the procedure deals very well with the masking and swamping effects.

Algorithm for the Robust Estimation in Logistic Regression (로지스틱회귀모형의 로버스트 추정을 위한 알고리즘)

  • Kim, Bu-Yong;Kahng, Myung-Wook;Choi, Mi-Ae
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.551-559
    • /
    • 2007
  • The maximum likelihood estimation is not robust against outliers in the logistic regression. Thus we propose an algorithm for the robust estimation, which identifies the bad leverage points and vertical outliers by the V-mask type criterion, and then strives to dampen the effect of outliers. Our main finding is that, by an appropriate selection of weights and factors, we could obtain the logistic estimates with high breakdown point. The proposed algorithm is evaluated by means of the correct classification rate on the basis of real-life and artificial data sets. The results indicate that the proposed algorithm is superior to the maximum likelihood estimation in terms of the classification.

Principal Components Logistic Regression based on Robust Estimation (로버스트추정에 바탕을 둔 주성분로지스틱회귀)

  • Kim, Bu-Yong;Kahng, Myung-Wook;Jang, Hea-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.531-539
    • /
    • 2009
  • Logistic regression is widely used as a datamining technique for the customer relationship management. The maximum likelihood estimator has highly inflated variance when multicollinearity exists among the regressors, and it is not robust against outliers. Thus we propose the robust principal components logistic regression to deal with both multicollinearity and outlier problem. A procedure is suggested for the selection of principal components, which is based on the condition index. When a condition index is larger than the cutoff value obtained from the model constructed on the basis of the conjoint analysis, the corresponding principal component is removed from the logistic model. In addition, we employ an algorithm for the robust estimation, which strives to dampen the effect of outliers by applying the appropriate weights and factors to the leverage points and vertical outliers identified by the V-mask type criterion. The Monte Carlo simulation results indicate that the proposed procedure yields higher rate of correct classification than the existing method.