• 제목/요약/키워드: V-Learning

검색결과 455건 처리시간 0.023초

딥 전이 학습을 이용한 인간 행동 분류 (Human Activity Classification Using Deep Transfer Learning)

  • 닌담 솜사우트;통운 문마이;숭타이리엥;오가화;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.478-480
    • /
    • 2022
  • This paper studies human activity image classification using deep transfer learning techniques focused on the inception convolutional neural networks (InceptionV3) model. For this, we used UFC-101 public datasets containing a group of students' behaviors in mathematics classrooms at a school in Thailand. The video dataset contains Play Sitar, Tai Chi, Walking with Dog, and Student Study (our dataset) classes. The experiment was conducted in three phases. First, it extracts an image frame from the video, and a tag is labeled on the frame. Second, it loads the dataset into the inception V3 with transfer learning for image classification of four classes. Lastly, we evaluate the model's accuracy using precision, recall, F1-Score, and confusion matrix. The outcomes of the classifications for the public and our dataset are 1) Play Sitar (precision = 1.0, recall = 1.0, F1 = 1.0), 2), Tai Chi (precision = 1.0, recall = 1.0, F1 = 1.0), 3) Walking with Dog (precision = 1.0, recall = 1.0, F1 = 1.0), and 4) Student Study (precision = 1.0, recall = 1.0, F1 = 1.0), respectively. The results show that the overall accuracy of the classification rate is 100% which states the model is more powerful for learning UCF-101 and our dataset with higher accuracy.

딥러닝 기반의 주행가능 영역 추출 모델에 관한 연구 (A Study on Model for Drivable Area Segmentation based on Deep Learning)

  • 전효진;조수선
    • 인터넷정보학회논문지
    • /
    • 제20권5호
    • /
    • pp.105-111
    • /
    • 2019
  • 인공지능, 빅데이터, 자율주행 등 4차 산업혁명시대를 이끄는 핵심기술은 컴퓨팅 파워의 급속한 발전과 사물인터넷에 기반한 초연결 네트워크를 통해 구현되고 서비스된다. 본 논문에서는 자율주행을 위한 기본적인 기능으로 다양한 환경에서도 정확하게 주행가능한 영역을 인식하여 추출하는 인공지능 딥러닝 모델들을 구현하고, 그 결과를 비교, 분석한다. 주행가능한 영역을 추출하는 딥러닝 모델은 영상 분할 분야에서 성능이 우수하고 자율주행 연구에서 많이 사용하는 Deep Lab V3+와 Mask R-CNN을 활용하였다. 다양한 환경에서의 주행 정보를 위해 여러 가지 날씨 조건과 주 야간 환경에서의 주행 영상 및 이미지를 제공하는 BDD 데이터셋을 학습데이터로 사용하였다. 활용한 모델들의 실험 결과, DeepLab V3+는 48.97%의 IoU를 보였으며, Mask R-CNN은 68.33%의 IoU로 더 우수한 성능을 보였다. 또한, 구현한 모델로 추출된 주행가능 영역을 이미지에 표시하여 육안으로 검사한 결과, Mask R-CNN은 83%, Deep Lab V3+는 69% 정확도로 Mask R-CNN이 Deep Lab V3+ 보다 주행가능한 영역을 추출하는 분야에서는 더 성능이 높은 것으로 확인하였다.

초등학생의 VARK 학습양식과 과학적 의사소통 능력의 관계 (An Analysis on the Relation of Elementary Students' VARK Styles and Scientific Communication Skills)

  • 하지훈;신영준
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제33권4호
    • /
    • pp.724-735
    • /
    • 2014
  • The purpose of this study was to confirm correlation between elementary school students' VARK Learning styles test and Scientific Communication Skills through VARK questionnaire (version 7.3) for Youngers and Scientific Communication Skills Test. The subjects were 99 in 6th grade students of an elementary school located in Gyeonggi-do, Korea. The results of this study were as follows: 64% of the students had multiple learning styles, but only 36% of the students preferred a single mode of information presentation. Among students had a single mode preference, the aural ("A") was the highest unimodal preference. Among "V(visual)" mode, "A" mode, "R(read/write)" mode, and "K(kinesthetic)" mode, "A" mode was the commonest learning mode which students had. In Scientific Communication Skills Test, students' overall average was 26.19p [scientific explanation type (11.85p), scientific insistence type (14.34p)]. Girls' scores were higher than boys in scientific explanation type, but not in scientific insistence type. The scores by communication forms were Text (5.67p), Number (6.87p), Table (6.15p), and Picture (7.49p). Girls' scores were higher than boys in Text and Picture forms but not in Number and Table forms. In result of correlation analysis (Spearman's rho) between VARK Learning Styles and the types & forms of Scientific Communication Skills, there were common correlation in "Read/write (R) learning style-Scientific insistence type", "Read/write (R) learning style-Grounds of Scientific insistence", "Read/write (R) learning style-Description of Scientific explanation", and "R learning style-Text form".

MobileNetV3 기반 요검사 서비스 어플리케이션 구현 (Implementation of Urinalysis Service Application based on MobileNetV3)

  • 박기조;최승환;김경석
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권4호
    • /
    • pp.41-46
    • /
    • 2023
  • 인체 소변은 혈액 내의 노폐물을 배출하는 과정으로 채취가 쉽고 다양한 물질들이 포함되어 있습니다. 요검사는 이를 통해 질병, 건강상태, 요로 감염 여부 등을 확인하는 용도로 사용됩니다. 요검사에는 물리적 성상 검사, 화학적 검사, 현미경 검사의 세 가지 방법이 있으며, 화학적 검사는 요검사지를 사용하여 쉽게 결과를 확인할 수 있다. 요검사지에는 다양한 항목들을 검사할 수 있으며, 이를 통해 다양한 질병들을 확인할 수 있다. 최근 스마트폰의 보급으로 스마트폰을 이용한 요검사지 판독 연구가 진행되고 있다. 스마트폰을 이용하여 요검사지의 색 변화를 감지하고 판독하는 방법이 있다. 이러한 방법은 RGB값과 색 차이 공식을 사용하여 판별한다. 그러나 다양한 환경 요인으로 인해 정확도가 떨어지는 문제가 있다. 본 논문은 이러한 문제를 해결하기 위해 딥러닝 모델을 적용한다. 특히, 경량화된 CNN(Convolutional Neural Networks) 모델을 사용하여 스마트폰 내에서 요검사지의 색 판별을 개선한다. CNN은 이미지 인식과 패턴 찾기에 유용한 모델로, 경량화된 버전도 사용 가능하다. 이를 통해 스마트폰에서 딥러닝 모델을 운영하고 정확한 요검사지 결과를 추출할 수 있다. 요검사지는 다양한 환경에서 촬영하여 딥러닝 모델 학습 이미지를 준비 하였으며 MobileNet V3을 사용하여 요검사 서비스 어플리케이션을 설계하였다.

YOLO v2를 이용한 고해상도 항공영상에서의 태양광발전소 탐지 방법 연구 (A Study on the Detection of Solar Power Plant for High-Resolution Aerial Imagery Using YOLO v2)

  • 김하영;나라;주동혁;최규훈;오윤경
    • 농촌계획
    • /
    • 제28권2호
    • /
    • pp.87-96
    • /
    • 2022
  • As part of strengthening energy security and responding to climate change, the government has promoted various renewable energy measures to increase the development of renewable energy facilities. As a result, small-scale solar installations in rural areas have increased rapidly. The number of complaints from local residents is increasing. Therefore, in this study, deep learning technology is applied to high-resolution aerial images on the internet to detect solar power plants installed in rural areas to determine whether or not solar power plants are installed. Specifically, I examined the solar facility detector generated by training the YOLO(You Only Look Once) v2 object detector and looked at its usability. As a result, about 800 pieces of training data showed a high object detection rate of 93%. By constructing such an object detection model, it is expected that it can be utilized for land use monitoring in rural areas, and it can be utilized as a spatial data construction plan for rural areas using technology for detecting small-scale agricultural facilities.

Training Data Sets Construction from Large Data Set for PCB Character Recognition

  • NDAYISHIMIYE, Fabrice;Gang, Sumyung;Lee, Joon Jae
    • Journal of Multimedia Information System
    • /
    • 제6권4호
    • /
    • pp.225-234
    • /
    • 2019
  • Deep learning has become increasingly popular in both academic and industrial areas nowadays. Various domains including pattern recognition, Computer vision have witnessed the great power of deep neural networks. However, current studies on deep learning mainly focus on quality data sets with balanced class labels, while training on bad and imbalanced data set have been providing great challenges for classification tasks. We propose in this paper a method of data analysis-based data reduction techniques for selecting good and diversity data samples from a large dataset for a deep learning model. Furthermore, data sampling techniques could be applied to decrease the large size of raw data by retrieving its useful knowledge as representatives. Therefore, instead of dealing with large size of raw data, we can use some data reduction techniques to sample data without losing important information. We group PCB characters in classes and train deep learning on the ResNet56 v2 and SENet model in order to improve the classification performance of optical character recognition (OCR) character classifier.

문제중심학습에서 학습자가 평가한 튜터 역할이 문제중심학습 만족도에 미치는 영향 (Effects of learners' perceived roles of a tutor on Problem-Based Learning satisfaction in Problem-Based Learning)

  • 김수진;강희경
    • 한국산학기술학회논문지
    • /
    • 제15권8호
    • /
    • pp.4942-4949
    • /
    • 2014
  • 본 연구는 문제중심학습에서 학습자가 평가한 튜터 역할이 문제중심학습 만족도에 미치는 영향을 알아보는데 목적이 있다. 이를 위해 문제중심학습으로 수업받는 간호학과 학생 100명을 대상으로 튜터 역할과 문제중심학습 만족도 도구를 가지고 설문조사를 실시하였다. 수집된 자료는 SPSS WIN(V. 20.0) 프로그램으로 상관관계 분석과 다중회귀분석을 실시하였다. 연구결과 4가지 튜터 역할 중 '지식통합촉진' 역할과 문제중심학습 만족도간에 관련성이 있었고 문제중심학습 만족도에 영향을 미치는 튜터 역할은 '지식통합촉진' 역할이었다.

A Study on the Establishment of Odor Management System in Gangwon-do Traditional Market

  • Min-Jae JUNG;Kwang-Yeol YOON;Sang-Rul KIM;Su-Hye KIM
    • 웰빙융합연구
    • /
    • 제6권2호
    • /
    • pp.27-31
    • /
    • 2023
  • Purpose: Establishment of a real-time monitoring system for odor control in traditional markets in Gangwon-do and a system for linking prevention facilities. Research design, data and methodology: Build server and system logic based on data through real-time monitoring device (sensor-based). A temporary data generation program for deep learning is developed to develop a model for odor data. Results: A REST API was developed for using the model prediction service, and a test was performed to find an algorithm with high prediction probability and parameter values optimized for learning. In the deep learning algorithm for AI modeling development, Pandas was used for data analysis and processing, and TensorFlow V2 (keras) was used as the deep learning library. The activation function was swish, the performance of the model was optimized for Adam, the performance was measured with MSE, the model method was Functional API, and the model storage format was Sequential API (LSTM)/HDF5. Conclusions: The developed system has the potential to effectively monitor and manage odors in traditional markets. By utilizing real-time data, the system can provide timely alerts and facilitate preventive measures to control and mitigate odors. The AI modeling component enhances the system's predictive capabilities, allowing for proactive odor management.

An active learning method with difficulty learning mechanism for crack detection

  • Shu, Jiangpeng;Li, Jun;Zhang, Jiawei;Zhao, Weijian;Duan, Yuanfeng;Zhang, Zhicheng
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.195-206
    • /
    • 2022
  • Crack detection is essential for inspection of existing structures and crack segmentation based on deep learning is a significant solution. However, datasets are usually one of the key issues. When building a new dataset for deep learning, laborious and time-consuming annotation of a large number of crack images is an obstacle. The aim of this study is to develop an approach that can automatically select a small portion of the most informative crack images from a large pool in order to annotate them, not to label all crack images. An active learning method with difficulty learning mechanism for crack segmentation tasks is proposed. Experiments are carried out on a crack image dataset of a steel box girder, which contains 500 images of 320×320 size for training, 100 for validation, and 190 for testing. In active learning experiments, the 500 images for training are acted as unlabeled image. The acquisition function in our method is compared with traditional acquisition functions, i.e., Query-By-Committee (QBC), Entropy, and Core-set. Further, comparisons are made on four common segmentation networks: U-Net, DeepLabV3, Feature Pyramid Network (FPN), and PSPNet. The results show that when training occurs with 200 (40%) of the most informative crack images that are selected by our method, the four segmentation networks can achieve 92%-95% of the obtained performance when training takes place with 500 (100%) crack images. The acquisition function in our method shows more accurate measurements of informativeness for unlabeled crack images compared to the four traditional acquisition functions at most active learning stages. Our method can select the most informative images for annotation from many unlabeled crack images automatically and accurately. Additionally, the dataset built after selecting 40% of all crack images can support crack segmentation networks that perform more than 92% when all the images are used.

딥러닝을 활용한 한국어 스피치 애니메이션 생성에 관한 고찰 (A Study on Korean Speech Animation Generation Employing Deep Learning)

  • 강석찬;김동주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권10호
    • /
    • pp.461-470
    • /
    • 2023
  • 딥러닝을 활용한 스피치 애니메이션 생성은 영어를 중심으로 활발하게 연구되어왔지만, 한국어에 관해서는 사례가 없었다. 이에, 본 논문은 최초로 지도 학습 딥러닝을 한국어 스피치 애니메이션 생성에 활용해 본다. 이 과정에서, 딥러닝이 스피치 애니메이션 연구를 그 지배적 기술인 음성 인식 연구로 귀결시킬 수 있는 중요한 효과를 발견하게 되어, 이 효과를 한국어 스피치 애니메이션 생성에 최대한 활용하는 방법을 고찰한다. 이 효과는 연구의 최우선 목표를 명확하게 하여, 근래에 들어 활발하지 않은 한국어 스피치 애니메이션 연구를 효과적이고 효율적으로 재활성화하는데 기여할 수 있다. 본 논문은 다음 과정들을 수행한다: (i) 블렌드쉐입 애니메이션 기술을 선택하며, (ii) 딥러닝 모델을 음성 인식 모듈과 표정 코딩 모듈의 주종 관계 파이프라인으로 구현하고, (iii) 한국어 스피치 모션 캡처 dataset을 제작하며, (iv) 두 대조용 딥러닝 모델들을 준비하고 (한 모델은 영어 음성 인식 모듈을 채택하고, 다른 모델은 한국어 음성 인식 모듈을 채택하며, 두 모델이 동일한 기본 구조의 표정 코딩 모듈을 채택한다), (v) 두 모델의 표정 코딩 모듈을 음성 인식 모듈에 종속되게 학습시킨다. 유저 스터디 결과는, 한국어 음성 인식 모듈을 채택하여 표정 코딩 모듈을 종속적으로 학습시킨 모델 (4.2/5.0 점 획득)이, 영어 음성 인식 모듈을 채택하여 표정 코딩 모듈을 종속적으로 학습시킨 모델 (2.7/5.0 점 획득)에 비해 결정적으로 더 자연스러운 한국어 스피치 애니메이션을 생성함을 보여 주었다. 이 결과는 한국어 스피치 애니메이션의 품질이 한국어 음성 인식의 정확성으로 귀결됨을 보여 줌으로써 상기의 효과를 확인해준다.