• Title/Summary/Keyword: V-BLAST

Search Result 150, Processing Time 0.024 seconds

Plant Virome Analysis by the Deep Sequencing of Small RNAs of Fritillaria thunbergii var. chekiangensis and the Rapid Identification of Viruses

  • Chen, Lu-xi;Pan, Hang-kai;Tao, Yu-tian;Yang, Dang;Deng, Hui-min;Xu, Kai-jie;Chen, Wen-bin;Li, Jun-min
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.533-540
    • /
    • 2022
  • Thunberg fritillary (Fritillaria thunbergii), a perennial used in traditional Chinese herbal medicine, is a members of the family Liliaceae. The degeneration of germplasm is a severe problem in the production of Fritillaria thunbergii var. chekiangensis. However, no information about viral infections of F. thunbergii var. chekiangensis has been reported. In this study, we sequenced the small RNAs of F. thunbergii var. chekiangensis from leaves and bulbs, and viruses were identified using a phylogenetic analysis and BLAST search for sequence. In addition, multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) was used to rapidly detect viruses in this variety. Our study first reported that five viruses infected F. thunbergii var. chekiangensis. Among them, fritillary virus Y (FVY), lily mottle virus (LMoV), Thunberg fritillary mosaic virus (TFMV), and hop yellow virus (HYV) had been reported in F. thunbergii, while apple stem grooving virus was first reported in the genus Fritillaria. A multiplex RT-PCR method was developed to rapidly test the four viruses FVY, LMoV, TFMV, and HYV in F. thunbergii var. chekiangensis. Our results provide a better understanding of the infection of F. thunbergii var. chekiangensis by viruses and a basic reference for the better design of suitable control measures.

Flow-Chart for Influence Estimation of Underwater Blasting (수중발파의 영향평가를 위한 Flow-Chart)

  • Park, Sun-Joon;Park, Yeon-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.47-54
    • /
    • 2008
  • In this study, ground vibration values and damping coefficient produced by underwater blasting were measured and analyzed. Equations of vibration, $V=K(SD)^{-0.536}$, were presented from quantitative experiment results. The K Values are classified with 1.507, 2.005 and 2.939 respectively at 50%, 90% and 95% reliability. Also, hydrospace noise in aquafarm and noise in atmosphere as well as ground vibrations were measured, and maximum values of these results were 86.8dB(A), 147.8dB(A), 0.244cm/s, respectively. Equations of hydrospace noise, $SL=293.2SD^{-0.164}$, was presented from quantitative experiment results. Also, the flow-chart for influence estimation and underwater blast design was presented from these results. The results of the study may be applied for the evaluation of the influence on aquafarm as a basic data before having main underwater blasting at construction sites.

An Efficient Partial Detection Scheme for MIMO-OFDM Systems (MIMO-OFDM 시스템에서 효율성을 위한 분할 검출 기법)

  • Kang, Sung-jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1722-1724
    • /
    • 2015
  • This paper proposes a partial detection scheme using QRD-M, DFE, and iterative schemes for efficiency in terms of detection performance and complexity in a MIMO-OFDM system. The proposed scheme detects signals by using the different detection methods in according to spatial stream. In the proposed scheme, QRD-M with high detection performance and high complexity is used in spatial stream that requires low complexity, and DFE with low detection performance and low complexity is used in spatial stream that requires high complexity. Also, the iterative detection is performed in the detected spatial stream by using DFE. From the simulation, it is confirmed that although proposed scheme has increased complexity, detection performance is greatly improved by the proposed scheme.

Phenomenological Model to Re-proportion the Ambient Cured Geopolymer Compressed Blocks

  • Radhakrishna, Radhakrishna;Madhava, Tirupati Venu;Manjunath, G.S.;Venugopal, K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.193-202
    • /
    • 2013
  • Geopolymer mortar compressed blocks were prepared using fly ash, ground granulated blast furnace slag, silica fume and metakaolin as binders and sand/quarry dust/pond ash as fine aggregate. Alkaline solution was used to activate the source materials for synthesizing the geopolymer mortar. Fresh mortar was used to obtain the compressed blocks. The strength development with reference to different parameters was studied. The different parameters considered were fineness of fly ash, binder components, type of fine aggregate, molarity of alkaline solution, age of specimen, fluid-to-binder ratio, binder-to-aggregate ratio, degree of saturation, etc. The compressed blocks were tested for compression at different ages. It was observed that some of the blocks attained considerable strength within 24 h under ambient conditions. The cardinal aim was to analyze the experimental data generated to formulate a phenomenological model to arrive at the combinations of the ingredients to produce geopolymer blocks to meet the strength development desired at the specified age. The strength data was analyzed within the framework of generalized Abrams' law. It was interesting to note that the law was applicable to the analysis of strength development of partially saturated compressed blocks when the degree of saturation was maintained constant. The validity of phenomenological model was examined with an independent set of experimental data. The blocks can replace the traditional masonry blocks with many advantages.

Cloning and Characterization of Genes Controlling Flower Color in Pharbitis nil Using AFLP (Amplified Fragment Length Polymorphism) and DDRT (Differential Display Reverse Transcription)

  • Kim, Eun-Mi;Jueson Maeng;Lim, Yong-Pyo;Yoonkang Hur
    • Journal of Photoscience
    • /
    • v.7 no.2
    • /
    • pp.73-78
    • /
    • 2000
  • To analyze molecular traits determining pigmentation between Pharbitis nill violet and white, Amplified Fragment Length Polymorphism(AFLP) and Differential Display Reverse Transcription(DDRT) experiments were carried out with either genomic DNAs or total RNAs isolated from both plants. Results of AFLP experiment in combination of 8 EcoRⅠ primers with 6 MseⅠ primers showed 41 violet-and 60 white-specific DNA bands. In the subsequent experiment, 22 violet-and 22 white-specific DNA fragments were amplified by PCR with DNAs eluted. The sizes of the fragments range from 200 to 600bp. DDRT using total RNA produced 19 violet-and 17 white-specific cDNA fragments, ranging from 200 to 600bp. The fragments obtained by both AFLP and DDRT had been cloned into pGEM T-easy vector, amplified and subjected to the nucleotide sequence analyses. As a result of Blast sequence analysis, most of them sequenced up to date showed no similarity to any Known gene, while few has similarity to known animal or plant genes. An AFLP clone V6, for example, has a strong sequence similarity to the human transcription factor LZIP-alpha mRNA and a DDRT clone W19 to Solanum tuberosum 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA.

  • PDF

Prediction of Insulation Capability for Ground Fault to Consider Asymmetry in SF6 Circuit Breaker

  • Oh, Yeon-Ho;Song, Ki-Dong;Kim, Hong-Kyu;Lee, Hae June;Hahn, Sung-Chin
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2046-2051
    • /
    • 2015
  • Currently, most high-voltage gas circuit breakers (CBs) include asymmetrical geometries in the shield, the tank, the hot-gas exhaust, and the connection parts for bushings. For this reason, a 3-dimensional (3-D) analysis of the insulation capability is necessary, rather than a 2-D analysis. However, a 3-D analysis has difficulties due to the computational time and complex modeling. This paper presents a 3-D analysis considering the asymmetry in high-voltage gas CBs and a technique to reduce the calculation time. In the proposed technique, the arc plasma requiring the most computational time is first calculated by a 2-D analysis. Then, the results such as pressure, temperature, and velocity are input as a source for the 3-D analysis. This technique is applied to a 145kV self-blast-type CB and the analysis result exhibits good agreement with the experimental result.

Gene expression involved in dark-induced leaf senescence in zoysiagrass (Zoysia japonica)

  • Cheng, Xiaoxia;Dai, Xiaomei;Zeng, Huiming;Li, Yunxia;Tang, Wei;Han, Liebao
    • Plant Biotechnology Reports
    • /
    • v.3 no.4
    • /
    • pp.285-292
    • /
    • 2009
  • Zoysiagrass (Zoysia japonica) is one of the important turfgrass species. Extending green period of zoysiagrass via delaying leaf senescence will make this species have more potential in the turfgrass industry. In this study, we found that zoysiagrass seedlings treated with $GA_3$ could delay the leaf senescence induced by darkness. To study expression of genes responsive to staying green in zoysiagrass, suppression subtractive hybridization (SSH) was used to identify differentially expressed genes between non-$non-GA_3-treated$ and $GA_3-treated$ seedlings subjected to darkness. A total of 307 ESTs were generated, of which 226 ESTs clustered into 54 contigs and 81 were singlets. Differentially expressed genes selected by subtractions were classified into six categories according to their putative functions generated by BLAST analysis. Expression of five selected genes, Met, SAM, V-ATPase, Cry (Cryptochrome gene), and An (diphthine synthase gene) were examined by RT-PCR and Real-time PCR. Both RT-PCR and Real-time PCR results demonstrated that the differential expressions of these genes were attributable to delaying senescence by exogenously applied gibberellic acid. This is the first genome-wide study of senescence in a species of turfgrass.

Design and Performance Evaluation of Cooperative Hybrid CDD Scheme in OFDMA Up-link Network (OFDMA 상향링크 네트워크에서 협력 하이브리드 기법의 설계 및 성능 평가)

  • Kim, Dae-Hwan;Song, Hyoung-Kyu;Cho, We-Duke
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7C
    • /
    • pp.435-442
    • /
    • 2011
  • The MIMO has weak points such as size and cost of systems and the complexity of hardware augment. Thus, the cooperative transmission techniques have been recently discussed briskly and it also solves problems by increase of shadowy area. However, limited cooperation scheme is utilized due to a single-antenna at the destination. The base station is simply equipped with multiple antennas. When the base station has multiple antennas, cooperative diversity and multiplexing schemes can be easily applied in the base station. To guarantee reliability with high throughput, a cooperative hybrid cyclic relay diversity transmission scheme is proposed which can use an arbitrary number of relays without rate loss and a modification of the base station. The presented results show that the proposed schemes can be effectively applied to the existing various MIMO-OFDM communication system.

Effect of Surface Roughness on Two-Phase Flow Heat Transfer by Confined Liquid Impinging Jet (액체 충돌제트의 표면조도변화에 따른 이상유동 열전달 특성)

  • Yim, Seong-Hwan;Shin, Chang-Hwan;Cho, Hyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.714-721
    • /
    • 2005
  • The water jet impingement cooling with boiling is one of the techniques to remove heat from high heat flux equipments. The configuration of surface roughness is one obvious condition of affecting the performance on heat transfer in nucleate boiling, The present study investigates the water jet impinging single-phase convection and nucleate boiling heat transfer for the effect of surface roughness to enhance the heat transfer in free surface and submerged jet. The distributions of the averaged wall temperature as well as the boiling curves are discussed. Jet velocities are varied from 0.65 to 1.7 m/s. Surface roughness by sand blast and sand paper varies from 0.3 to 2.51 ${\mu}m$ and cavity shapes on surface are semi-circle and v-shape, respectively The results showed that higher velocity of the jet caused the boiling incipience to be delayed more. The incipient boiling and heat transfer increase with increasing surface roughness due to a large number of cavities of uniform size.

Evaluation on Steel Bar Corrosion Embedded in Antiwashout Underwater Concrete

  • Moon Han-Young;Shin Kook-Jae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.303-309
    • /
    • 2005
  • This study aims the evaluation of the corrosion of steel bar embedded in antiwashout underwater concrete, which has rather been neglected to date. To that goal, accelerated steel bar corrosion tests have been performed on three series of steel bar-reinforced antiwashout underwater concrete specimens manufactured with different admixtures. The three series of antiwashout underwater concrete were: concrete constituted exclusively with ordinary portland cement (OPC), concrete composed of ordinary portland cement mixed with fly-ash in $20\%$ ratio (FA20), and concrete with ground granulated blast furnace slag mixed in $50\%$ ratio (BFS50). The environment of manufacture was in artificial seawater. Measurement results using half-cell potential surveyor showed that, among all the specimens, steel bar in OPC was the first one that exceeded the threshold value proposed by ASTM C 876 with a potential value below -350mv after 14 cycles. And, the corresponding corrosion current density and concentration of water soluble chloride were measured as $30{\mu}A/mm^2$ and $0.258\%$. On the other hand, for the other specimens that are FA20 and BFS50, potential values below -350mV were observed later at 18 and 20 cycles, respectively. Results confirmed the hypothesis that mineral admixtures may be more effective on delay the development of steel bar corrosion in antiwashout underwater concrete.