Ji, Moon-Se;Ki, Heajeong;Ki, Chang-Min;Moon, Beom-Seob;Park, Sung-Geon
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.12
/
pp.1762-1769
/
2021
The final goal of this study is to develop a system that can analyze whether a wanted vehicle is a criminal vehicle from images collected from black boxes, smartphones, CCTVs, and so on. Data collection was collected using a self-developed black box. The used data in this study has used a total of 83,753 cases such as the eight vehicle types(truck, RV, passenger car, van, SUV, bus, sports car, electric vehicle) and 434 vehicle models. As a result of vehicle recognition using YOLO v5, mAP was found to be 80%. As a result of identifying the vehicle model with ReXNet using the self-developed black box, the accuracy was found to be 99%. The result was verified by surveying field police officers. These results suggest that improving the accuracy of data labeling helps to improve vehicle recognition performance.
In this paper, we propose a method to implement a real-time fire alarm system using deep learning. The deep learning image dataset for fire alarms acquired 1,500 sheets through the Internet. If various images acquired in a daily environment are learned as they are, there is a disadvantage that the learning accuracy is not high. In this paper, we propose a fire image data expansion method to improve learning accuracy. The data augmentation method learned a total of 2,100 sheets by adding 600 pieces of learning data using brightness control, blurring, and flame photo synthesis. The expanded data using the flame image synthesis method had a great influence on the accuracy improvement. A real-time fire detection system is a system that detects fires by applying deep learning to image data and transmits notifications to users. An app was developed to detect fires by analyzing images in real time using a model custom-learned from the YOLO V4 TINY model suitable for the Edge AI system and to inform users of the results. Approximately 10% accuracy improvement can be obtained compared to conventional methods when using the proposed data.
The radiation shielding characteristic of neutron shielding material has been studied as the preliminary study in order to design cosmic-ray shielding material. Specially, Soft Magnetic Material, known to be effective in EMP and radiation shielding, has been investigated to check if the material would be applicable to cosmic-ray shielding. In this work, thermal neutron shielding experiment was conducted and the Monte Carlo N-Particle(MCNP) was applied to employ skymap.dat, which is cosmic-ray data embedded in MCNP. As a result, polyethylene, borated polyethylene, and carbon nano tube, containing carbon or hydrogen, have been found to be effective in reduction of neutron flux below 20 MeV (including thermal, epithermal, evaporation). In contrast, the materials composed of iron such as SS316 and Soft Magnetic Material show a good shielding performance in the cascade energy range (above 20 MeV). Since Soft Magnetic Material is consisting of 13% of boron, it can also decrease thermal neutron flux, so it is expected that it would show a significant reduction on the entire range of neutron energy if the Soft Magnetic Material is used with hydrogen and carbon, so called low Z material.
Kim, Dowon;Kim, Minkyu;Kim, Yoon;Han, Seon-Sook;Heo, Jungwon;Choi, Hyun-Soo
Journal of the Korea Society of Computer and Information
/
v.27
no.12
/
pp.69-76
/
2022
This paper proposes a method of refining and processing time-series data using Medical Information Mart for Intensive Care (MIMIC-IV) v2.0 data. In addition, the significance of the processing method was validated through a machine learning-based pressure ulcer early warning system using a dataset processed based on the proposed method. The implemented system alerts medical staff in advance 12 and 24 hours before a lesion occurs. In conjunction with the Electronic Medical Record (EMR) system, it informs the medical staff of the risk of a patient's pressure ulcer development in real-time to support a clinical decision, and further, it enables the efficient allocation of medical resources. Among several machine learning models, the GRU model showed the best performance with AUROC of 0.831 for 12 hours and 0.822 for 24 hours.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.3
/
pp.355-366
/
2022
This paper proposes a microcode-based neural network accelerator controller for artificial intelligence accelerators that can be reconstructed using a programmable architecture and provide the advantages of low-power and ultra-small chip size. In order for the target accelerator to support various neural network models, the neural network model can be converted into microcode through microcode compiler and mounted on accelerator to control the operators of the accelerator such as datapath and memory access. While the proposed controller and accelerator can run various CNN models, in this paper, we tested them using the YOLOv2-Tiny CNN model. Using a system clock of 200 MHz, the Controller and accelerator achieved an inference time of 137.9 ms/image for VOC 2012 dataset to detect object, 99.5ms/image for mask detection dataset to detect wearing mask. When implementing an accelerator equipped with the proposed controller as a silicon chip, the gate count is 618,388, which corresponds to 65.5% reduction in chip area compared with an accelerator employing a CPU-based controller (RISC-V).
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.16
no.4
/
pp.210-219
/
2023
The decline in the rural populace and an aging workforce have led to fatalities due to worsening environments and hazards within vinyl greenhouses. Therefore, it is necessary to automate crop cultivation and disease detection system in greenhouses to prevent labor loss. In this paper, an object detection-based model is used to detect diseased crop in greenhouses. In addition, the system proposed configures the environment of the artificial intelligence model in the cloud to ensure stability. The system captures images taken inside the vinyl greenhouse and stores them in a database, and then downloads the images to the cloud to perform inference based on Yolo-v4 for detection, generating JSON files for the results. Analyze this file and send it to the database for storage. From the experimental results, it was confirmed that disease detection through object detection showed high performance in real environments like vinyl greenhouses. It was also verified that efficient monitoring is possible through the database
This paper describes the results of structural integrity and crashworthiness of Automatic Guideway Transit(AGT) vehicle made of sandwich composites. The applied sandwich composite of vehicle structure was composed of aluminum honeycomb core and WR580/NF4000 glass fabric/epoxy laminate composite facesheet. Material testing was conducted to determine the input parameters for the composite facesheet model, and the effective equivalent damage model fer the orthotropic honeycomb core material. The finite element analysis using ANSYS v11.0 was dont to evaluate structural integrity of AGT vehicle according to JIS E 7105 and ASCE 21-98. Crashworthiness analysis was carried out using explicit finite element code LS-DYNA3D with the lapse of time. The crash condition was frontal accident with speed of 10km/h at rigid wall. The results showed that the structural integrity and crashworthiness of AGT vehicle were proven under the specified loading and crash conditions. Also, the modified Chang-Chang failure criterion was recommended to evaluate the failure modes of composite structures after crashworthiness event.
Autonomous delivery operation data is the key to driving a paradigm shift for last-mile delivery in the Corona era. To bridge the technological gap between domestic autonomous delivery robots and overseas technology-leading countries, large-scale data collection and verification that can be used for artificial intelligence training is required as the top priority. Therefore, overseas technology-leading countries are contributing to verification and technological development by opening AI training data in public data that anyone can use. In this paper, 326 objects were collected to trainn autonomous delivery robots, and artificial intelligence models such as Mask r-CNN and Yolo v3 were trained and verified. In addition, the two models were compared based on comparison and the elements required for future autonomous delivery robot research were considered.
Journal of the Korea Society of Computer and Information
/
v.29
no.1
/
pp.61-68
/
2024
Despite the continuous efforts to mitigate pedestrian accidents at crosswalks, the problem persist. Vulnerable groups, including the elderly and disabled individuals are at a risk of being involved in traffic incidents. This paper proposes the implementation of object detection algorithm using the YOLO v5 model specifically for pedestrians using assistive devices like wheelchairs and crutches. For this research, data was collected and utilized through image crawling, Roboflow, and Mobility Aids datasets, which comprise of wheelchair users, crutch users, and pedestrians. Data augmentation techniques were applied to improve the model's generalization performance. Additionally, ensemble techniques were utilized to mitigate type 2 errors, resulting in 96% recall rate. This demonstrates that employing ensemble methods with a single YOLO model to target transportation-disadvantaged individuals can yield accurate detection performance without overlooking crucial objects.
Suho Bak;Heung-Min Kim;Youngmin Kim;Inji Lee;Miso Park;Tak-Young Kim;Seon Woong Jang
Korean Journal of Remote Sensing
/
v.40
no.2
/
pp.151-166
/
2024
Coastal debris presents a significant environmental threat globally. This research sought to improve the monitoring methods for coastal debris by employing deep learning and remote sensing technologies. To achieve this, an object detection approach utilizing the You Only Look Once (YOLO)v8 model was implemented to develop a comprehensive image dataset for 11 primary types of coastal debris in our country, proposing a protocol for the real-time detection and analysis of debris. Drone imagery was collected over Sinja Island, situated at the estuary of the Nakdong River, and analyzed using our custom YOLOv8-based analysis program to identify type-specific hotspots of coastal debris. The deployment of these mapping and analysis methodologies is anticipated to be effectively utilized in managing coastal debris.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.