• Title/Summary/Keyword: V 모델

Search Result 1,402, Processing Time 0.024 seconds

The System of Arresting Wanted Vehicles for Violent Crimes for Public Safety (국민안전을 위한 강력범죄 수배차량 검거시스템)

  • Ji, Moon-Se;Ki, Heajeong;Ki, Chang-Min;Moon, Beom-Seob;Park, Sung-Geon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1762-1769
    • /
    • 2021
  • The final goal of this study is to develop a system that can analyze whether a wanted vehicle is a criminal vehicle from images collected from black boxes, smartphones, CCTVs, and so on. Data collection was collected using a self-developed black box. The used data in this study has used a total of 83,753 cases such as the eight vehicle types(truck, RV, passenger car, van, SUV, bus, sports car, electric vehicle) and 434 vehicle models. As a result of vehicle recognition using YOLO v5, mAP was found to be 80%. As a result of identifying the vehicle model with ReXNet using the self-developed black box, the accuracy was found to be 99%. The result was verified by surveying field police officers. These results suggest that improving the accuracy of data labeling helps to improve vehicle recognition performance.

Implementation of a Deep Learning based Realtime Fire Alarm System using a Data Augmentation (데이터 증강 학습 이용한 딥러닝 기반 실시간 화재경보 시스템 구현)

  • Kim, Chi-young;Lee, Hyeon-Su;Lee, Kwang-yeob
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.468-474
    • /
    • 2022
  • In this paper, we propose a method to implement a real-time fire alarm system using deep learning. The deep learning image dataset for fire alarms acquired 1,500 sheets through the Internet. If various images acquired in a daily environment are learned as they are, there is a disadvantage that the learning accuracy is not high. In this paper, we propose a fire image data expansion method to improve learning accuracy. The data augmentation method learned a total of 2,100 sheets by adding 600 pieces of learning data using brightness control, blurring, and flame photo synthesis. The expanded data using the flame image synthesis method had a great influence on the accuracy improvement. A real-time fire detection system is a system that detects fires by applying deep learning to image data and transmits notifications to users. An app was developed to detect fires by analyzing images in real time using a model custom-learned from the YOLO V4 TINY model suitable for the Edge AI system and to inform users of the results. Approximately 10% accuracy improvement can be obtained compared to conventional methods when using the proposed data.

Preliminary Study of Cosmic-ray Shielding Material Design Using Monte-Carlo Radiation Transport Code (몬테카를로 방사선 수송 모델을 활용한 우주방사선 차폐체 설계 관련 선행연구)

  • Kang, Chang-Woo;Kim, Yeong-Chan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.527-536
    • /
    • 2022
  • The radiation shielding characteristic of neutron shielding material has been studied as the preliminary study in order to design cosmic-ray shielding material. Specially, Soft Magnetic Material, known to be effective in EMP and radiation shielding, has been investigated to check if the material would be applicable to cosmic-ray shielding. In this work, thermal neutron shielding experiment was conducted and the Monte Carlo N-Particle(MCNP) was applied to employ skymap.dat, which is cosmic-ray data embedded in MCNP. As a result, polyethylene, borated polyethylene, and carbon nano tube, containing carbon or hydrogen, have been found to be effective in reduction of neutron flux below 20 MeV (including thermal, epithermal, evaporation). In contrast, the materials composed of iron such as SS316 and Soft Magnetic Material show a good shielding performance in the cascade energy range (above 20 MeV). Since Soft Magnetic Material is consisting of 13% of boron, it can also decrease thermal neutron flux, so it is expected that it would show a significant reduction on the entire range of neutron energy if the Soft Magnetic Material is used with hydrogen and carbon, so called low Z material.

Method of preventing Pressure Ulcer and EMR data preprocess

  • Kim, Dowon;Kim, Minkyu;Kim, Yoon;Han, Seon-Sook;Heo, Jungwon;Choi, Hyun-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.69-76
    • /
    • 2022
  • This paper proposes a method of refining and processing time-series data using Medical Information Mart for Intensive Care (MIMIC-IV) v2.0 data. In addition, the significance of the processing method was validated through a machine learning-based pressure ulcer early warning system using a dataset processed based on the proposed method. The implemented system alerts medical staff in advance 12 and 24 hours before a lesion occurs. In conjunction with the Electronic Medical Record (EMR) system, it informs the medical staff of the risk of a patient's pressure ulcer development in real-time to support a clinical decision, and further, it enables the efficient allocation of medical resources. Among several machine learning models, the GRU model showed the best performance with AUROC of 0.831 for 12 hours and 0.822 for 24 hours.

Microcode based Controller for Compact CNN Accelerators Aimed at Mobile Devices (모바일 디바이스를 위한 소형 CNN 가속기의 마이크로코드 기반 컨트롤러)

  • Na, Yong-Seok;Son, Hyun-Wook;Kim, Hyung-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.355-366
    • /
    • 2022
  • This paper proposes a microcode-based neural network accelerator controller for artificial intelligence accelerators that can be reconstructed using a programmable architecture and provide the advantages of low-power and ultra-small chip size. In order for the target accelerator to support various neural network models, the neural network model can be converted into microcode through microcode compiler and mounted on accelerator to control the operators of the accelerator such as datapath and memory access. While the proposed controller and accelerator can run various CNN models, in this paper, we tested them using the YOLOv2-Tiny CNN model. Using a system clock of 200 MHz, the Controller and accelerator achieved an inference time of 137.9 ms/image for VOC 2012 dataset to detect object, 99.5ms/image for mask detection dataset to detect wearing mask. When implementing an accelerator equipped with the proposed controller as a silicon chip, the gate count is 618,388, which corresponds to 65.5% reduction in chip area compared with an accelerator employing a CPU-based controller (RISC-V).

Object Detection-Based Cloud System: Efficient Disease Monitoring with Database (객체 검출 기반 클라우드 시스템 : 데이터베이스를 통한 효율적인 병해 모니터링)

  • Jongwook Si;Junyoung Kim;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.210-219
    • /
    • 2023
  • The decline in the rural populace and an aging workforce have led to fatalities due to worsening environments and hazards within vinyl greenhouses. Therefore, it is necessary to automate crop cultivation and disease detection system in greenhouses to prevent labor loss. In this paper, an object detection-based model is used to detect diseased crop in greenhouses. In addition, the system proposed configures the environment of the artificial intelligence model in the cloud to ensure stability. The system captures images taken inside the vinyl greenhouse and stores them in a database, and then downloads the images to the cloud to perform inference based on Yolo-v4 for detection, generating JSON files for the results. Analyze this file and send it to the database for storage. From the experimental results, it was confirmed that disease detection through object detection showed high performance in real environments like vinyl greenhouses. It was also verified that efficient monitoring is possible through the database

An Evaluation of Structural Integrity and Crashworthiness of Automatic Guideway Transit(AGT) Vehicle made of Sandwich Composites (샌드위치 복합재 적용 자동무인경전철 차체 구조물의 구조 안전성 및 충돌 특성 평가 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Cho, Se-Hyun;Kim, Dea-Hwan
    • Composites Research
    • /
    • v.21 no.5
    • /
    • pp.15-22
    • /
    • 2008
  • This paper describes the results of structural integrity and crashworthiness of Automatic Guideway Transit(AGT) vehicle made of sandwich composites. The applied sandwich composite of vehicle structure was composed of aluminum honeycomb core and WR580/NF4000 glass fabric/epoxy laminate composite facesheet. Material testing was conducted to determine the input parameters for the composite facesheet model, and the effective equivalent damage model fer the orthotropic honeycomb core material. The finite element analysis using ANSYS v11.0 was dont to evaluate structural integrity of AGT vehicle according to JIS E 7105 and ASCE 21-98. Crashworthiness analysis was carried out using explicit finite element code LS-DYNA3D with the lapse of time. The crash condition was frontal accident with speed of 10km/h at rigid wall. The results showed that the structural integrity and crashworthiness of AGT vehicle were proven under the specified loading and crash conditions. Also, the modified Chang-Chang failure criterion was recommended to evaluate the failure modes of composite structures after crashworthiness event.

Class Classification and Type of Learning Data by Object for Smart Autonomous Delivery (스마트 자율배송을 위한 클래스 분류와 객체별 학습데이터 유형)

  • Young-Jin Kang;;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.37-47
    • /
    • 2022
  • Autonomous delivery operation data is the key to driving a paradigm shift for last-mile delivery in the Corona era. To bridge the technological gap between domestic autonomous delivery robots and overseas technology-leading countries, large-scale data collection and verification that can be used for artificial intelligence training is required as the top priority. Therefore, overseas technology-leading countries are contributing to verification and technological development by opening AI training data in public data that anyone can use. In this paper, 326 objects were collected to trainn autonomous delivery robots, and artificial intelligence models such as Mask r-CNN and Yolo v3 were trained and verified. In addition, the two models were compared based on comparison and the elements required for future autonomous delivery robot research were considered.

A Study on Traffic Vulnerable Detection Using Object Detection-Based Ensemble and YOLOv5

  • Hyun-Do Lee;Sun-Gu Kim;Seung-Chae Na;Ji-Yul Ham;Chanhee Kwak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.61-68
    • /
    • 2024
  • Despite the continuous efforts to mitigate pedestrian accidents at crosswalks, the problem persist. Vulnerable groups, including the elderly and disabled individuals are at a risk of being involved in traffic incidents. This paper proposes the implementation of object detection algorithm using the YOLO v5 model specifically for pedestrians using assistive devices like wheelchairs and crutches. For this research, data was collected and utilized through image crawling, Roboflow, and Mobility Aids datasets, which comprise of wheelchair users, crutch users, and pedestrians. Data augmentation techniques were applied to improve the model's generalization performance. Additionally, ensemble techniques were utilized to mitigate type 2 errors, resulting in 96% recall rate. This demonstrates that employing ensemble methods with a single YOLO model to target transportation-disadvantaged individuals can yield accurate detection performance without overlooking crucial objects.

High-Resolution Mapping Techniques for Coastal Debris Using YOLOv8 and Unmanned Aerial Vehicle (YOLOv8과 무인항공기를 활용한 고해상도 해안쓰레기 매핑)

  • Suho Bak;Heung-Min Kim;Youngmin Kim;Inji Lee;Miso Park;Tak-Young Kim;Seon Woong Jang
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.151-166
    • /
    • 2024
  • Coastal debris presents a significant environmental threat globally. This research sought to improve the monitoring methods for coastal debris by employing deep learning and remote sensing technologies. To achieve this, an object detection approach utilizing the You Only Look Once (YOLO)v8 model was implemented to develop a comprehensive image dataset for 11 primary types of coastal debris in our country, proposing a protocol for the real-time detection and analysis of debris. Drone imagery was collected over Sinja Island, situated at the estuary of the Nakdong River, and analyzed using our custom YOLOv8-based analysis program to identify type-specific hotspots of coastal debris. The deployment of these mapping and analysis methodologies is anticipated to be effectively utilized in managing coastal debris.