• Title/Summary/Keyword: V형상

Search Result 550, Processing Time 0.028 seconds

Process and die designs for isothermal forging of the small-scale Ti-6Al-4V wing shape (Ti-6Al-4V 소형 날개형상의 항온단조 공정 및 금형설계)

  • Yeom J.T.;Park N.K.;Lee Y.H.;Shin T.J.;Hong S.S.;Shim I.O.;Hwang S.M.;Lee C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.114-117
    • /
    • 2004
  • The isothermal forging design of a Ti-6Al-4V wing shape was performed by 3D FE simulation. The design focuses on near-net shape forming by the single stage. The process variables such as the die design, pre-form shape and size, ram speed and forging temperature were investigated. The minimization of forging load and uniform strain distribution in a given forging condition were considered as main design factors. The FE simulation results fur the final process design were compared with the isothermal forging tests. Finally, the modified process design for producing the uniform Ti-6Al-4V wing product without forming defects was suggested.

  • PDF

Analysis of Induction Heating according to Coil Shapes on the V-groove Weld Joint (V-groove를 가진 모재에서 코일 형상에 따른 유도가열 해석)

  • Ahn, Soo Deok;Cho, Young Tae;Jung, Yoon Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.167-172
    • /
    • 2015
  • In order to prevent crack in thick weld zones, the preheating process such as induction and gas torch heating needs to be applied. Among them induction heating is the most effective heat source because it has rare thermal effect and very rapid heating characteristics. In this paper, when the induction heating method is used to improve arc welding, the temperature distribution and magnetic field density of the welding zones are analyzed by simultaneously solving heat transfer and electromagnetic field equation. In particular, cone and flat type coils are designed and induction heating effects of each type are compared to identify heating characteristics on a V-groove weld joint. As a result, a cone shape coil is more efficient in the preheating process. When induction heating and arc welding system is designed for thick plate with V-groove weld joint, the results in this paper could be applied.

Shape Design of A Spacer for 800kV GIS Interrupter (800kV급 GIS의 모델차단부용 스페이서의 형상설계)

  • Shin, Y.J.;Chang, K.C.;Park, K.Y.;Chong, J.K.;Song, W.P.;Kang, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1639-1642
    • /
    • 1994
  • The severe conditions such as rated voltage of 800kV, gas pressure of $5kg/cm^2$ and rated lighting impulse withstand voltage of 2400kV were adopted for the design of spacers in the 800kV GIS to give a sufficient design margin. The design criteria on the maximum electric field strength of the center conductor and the insulator surface were established by considering the insulator surface characteristics, electrode area and surface effects in the unequal electric field strength of the given gap. The design parameters such as inter/outer envelope degree, thickness, inter/outer inserts, triple junction gap were determined by calculating the electric field using FLUX-2D program package and by referring to the published papers. The mechanical stress analysis was conducted on the feasible model spacers that showed good electric field distributions to confirm the sufficient mechanical design margin. The 800kV spacer designed as described above is now in the process of manufacturing.

  • PDF

증착 온도 변화에 따른 IGZO 박막의 특성

  • Kim, Seong-Yeon;Lee, Tae-Il;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.23.1-23.1
    • /
    • 2009
  • Transparent thin film transistor(TTFT)는 기존의 디스플레이가 가지고 있는 공간적, 시각적 제약을 해소하는 것이 가능하며, 이는 디스플레이 산업 및 기술이 지향하는 대면적, 저가격, 공정의 단순함을 해결해 줄 수 있기 때문에 최근 TTFT에 관한 연구가 급증하고 있다. 산화물 기반의 TFT는 유리, 금속, 플라스틱 등등 그 기판 종류에 상관없이 균일한 제작이 가능하며, 상온 및 저온에서 대면적으로 제작 가능하고, 저렴한 비용으로 제작 가능하다는 장점 때문에 최근 산화물을 기반으로 하는 TFT 연구가 많이 이루어지고 있다. 현재 TTFT 물질로 많이 연구되고 있는 산화물은 ZnO(3.4 eV)나 $InO_x$(3.6 eV), $GaO_x$(4.9 eV), $SnO_x$(3.7 eV)등의 물질과 각각의 조합으로 구성된 재료들이 주로 사용되고 있다. 가장 많은 연구가 이루어진 ZnO 기반의 TFT는 mobility와 switching 속도에서 우수한 특성을 보이나, amorphous ZnO 기반의 TFT의 경우 소자의 안정성이 떨어지는 것으로 보고되고 있다. 따라서 본 연구에서는 ZnO 보다 넓은 bandgap energy를 가질 수 있으며, n-type 특성을 보이고, amorphous 구조로 제작 가능한 IGZO 물질을 사용하여 RF magnetron sputtering 방법으로 박막 증착 온도의 변화를 주어 증착하였고, 증착된 IGZO 박막의 열처리를 통해 이에 따른 특성 변화를 분석하였다. Field emission scanning electron microscope(FESEM)와 surface profiler를 이용하여 IGZO 박막의 표면의 형상과 두께를 확인하였으며, x-ray diffraction(XRD) 분석을 통해 박막의 결정학적 특성을 관찰하였다. TTFT 물질로서 IGZO 박막의 적합성 여부를 확인하기 위하여 TFT를 만든 후 I-V를 측정하였으며, UV-vis를 이용하여 IGZO 박막의 투과율을 분석하여 TTFT로의 응용 가능성을 확인하였다.

  • PDF

A Study on the Heat Sink with internal structure using Peltier Module In the Natural and Forced Convection (자연대류와 강제대류에서 펠티에 소자를 이용한 내부터널 구조를 가지는 히트싱크에 관한 연구)

  • Lee, Min;Kim, Tae-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4072-4080
    • /
    • 2014
  • The Peltier Module has been used to dissipate the heat from electronic devices and electronic components. In this module, a heat sink is used to release the operating heat into the air outside. This study addressed the heat transfer characteristics for a heat sink with an inner tunnel. Under forced and natural convection conditions, the heat transfer characteristics were different. Therefore, the cooling and heating performances were studied for the heat sink, which has an inner tunnel. The heat transfer conditions were also evaluated by performing an experimental test, which investigated the heat transfer characteristics related to the variance in time and temperature distribution. Experiments on the heat transfer characteristics of the heat sink were conducted based on the forced and natural convection and temperature distribution changes. In the cooling experiment, the A- and B-shaped cooling pin heat sinks decreased the temperature of the forced convection than the temperature of natural convection. In the forced and natural convection, the A- and B-shaped decreased to a minimum of $-15^{\circ}C$. Under the forced and natural convection conditions, A- and B-shaped cooling pin heat sinks decreased the temperature when the voltage was increased. In the heating experiment, the A- and B-shaped cooling pin heat sinks increased the temperature of the forced convection than the temperature of natural convection. In forced convection, when the voltage was $15^{\circ}C$, the temperature of the A-shaped cooling pin heat sink increased to $150^{\circ}C$, and the temperature of the B-shaped cooling pin heat sink increased to $145^{\circ}C$. Under forced and natural convection conditions, the A- and B-shaped cooling pin heat sinks showed an increase in temperature with increasing voltage.

Measurement and Analysis of Electric Filed Distributions under 154[kV] Overhead Tranamission Lines (154[KV] 가공송전선로 아래에서 전장분포의 측정과 분석)

  • 이복희;이정기;안창환;이경옥;박동화;곽희로;송진호
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.1
    • /
    • pp.92-98
    • /
    • 1997
  • In this paper, the results of the measurement and analysis of extremely low freqency(ELF) eletric field in the vicinity of 154[kV] overhad transmission lines have been described. The planar-type electric field sensor has been fabricated by three dimensional structure with special consideration of taking the power frequency and lower components. The calibration experiments have been carried out according to the procedures of IEEE recommendation. The electric field measuring system has the frequency bandwidth of 7[Hz] to 2.7[MHz] and the response sensitivity of 0.094[mV/V/m]. Also the practical measurements of electric field under an 154[kV] double corcuit overhead transmission lines have been made abd abalyzed. It was known that the lateral electric field profiles under an 154[kV] double circuit overhead transmission lines show the asymmetrical distributions owing to the environmental metal frame structures and their maximum electric field magnitude is less than 3[kV/m]. It can be concluded that the measured results of the electric fields satisfy with all limits or guide -lines of the various authorized international institutes' recommendations.

  • PDF

A Study of Heat Transfer in a Horizontal Ice Storage Tube - Inward Freezing Process with Volume Expansion of Ice - (수평 원통형 빙축열조에서의 열전달에 관한 연구 - 얼음의 부피 팽창을 고려하는 내향 응고 실험 -)

  • Lee, J.Y.;Kim, Y.K.;Cho, N.C.;Kim, Y.J.;Yim, C.S.
    • Solar Energy
    • /
    • v.15 no.1
    • /
    • pp.3-11
    • /
    • 1995
  • Heat transfer phenomena during inward freezing process of the water in a horizontal cylinder were experimentally studied. The cooling temperature of a wall more significantly affects the timewise average temperature than the initial superheating temperature of the water. In addition, it was absolved that the timewise average temperature was influenced by the initial volume ratio of the water($V_l/V_{tot}$) at the same temperature conditons. One the other hand, the freezing speed of the upper part in the water-ice interface was quickly progressed due to natural convection. Furthermore, experimental observation showed that the frozen mass fraction($M_s/M_{tot}$) was influenced by the initial volume ratio of the water($V_l/V_{tot}$). It was noted that the frozen mass fraction for each $V_l/V_{tot}$ represented by $Ste^*$ and Fo.

  • PDF

Three-Dimensional Virtual Crack Closure Technique Based on Anisoparametric Model for Stress Intensity Factors of Patch Repaired Plates with Cracks at Notches (접착 보강된 노치 균열판의 응력확대계수 산정을 위한 비등매개변수 모델 기반의 3차원 가상균열닫힘법)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.39-48
    • /
    • 2012
  • This study deals with numerical determination of stress intensity factors of adhesively patch-repaired plates with cracks at V-shaped or semicircular notches. The p-convergent anisoparametric model are considered and then three-dimensional virtual crack closure technique is presented using formulations of anisoparametric elements. In assumed displacement fields of an element, strain-displacement relations and three-dimensional constitutive equations are derived with three-dimensional hierarchical shape functions expanded from one-dimensional Lobatto functions. Transfinite mapping technique is used to represent a circular boundary. The present model provides accuracy and simplicity in terms of stress concentration factor, stress distribution, the number of degrees of freedom, and non-dimensional stress intensity factor as compared with previous works in literatures. Stress intensity factors obtained by the three-dimensional virtual crack closure technique are estimated with respect to the variation of width of finite plate, radius of notch root, angular inclination of V-shaped notch, and crack length.

Sensitivity Analysis of Off-Axis F8 Cassegrain Telescope (초점비 8의 비축 카세그레인 광학계의 민감도 분석)

  • An, Jongho;Kim, Sanghyuk;Pak, Soojong;Jeong, Byeongjoon;Chang, Seunghyuk;Park, Woojin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.56.2-56.2
    • /
    • 2015
  • 본 연구에서는 미국 맥도날드 천문대 (Mcdonald Observatory)에 있는 82인치 Otto Struve 망원경의 가이드 망원경으로 사용하기 위해 2개의 반사경을 이용해 구경이 100 mm이고 유효초점거리가 800 mm인 비축 반사망원경을 설계하였다. 비축 반사경은 일반적인 축 대칭인 반사경보다 가공이 매우 어렵기 때문에 형상 정밀도의 요구량을 알 수 있다면 비축 반사경을 가공하는 과정에서 시간과 비용을 절약할 수 있다. 광학계가 수차가 잘 보정된 회절한계의 성능이기 때문에 엔서클드 에너지 직경(Encircled Energy Diameter) 분석을 통해 민감도 분석을 하였다. 광학설계 소프트웨어인 CodeV를 사용하여 80 % 에너지가 $20{\mu}m$ 내에 들도록 공차한계로 설정하였으며, 기준 파장은 $587.56{\mu}m$이다. 또한 부경과 초점 면 사이의 거리를 보상자로 설정하여 공차가 광학계의 성능에 미치는 영향을 최소화하였다. 민감도 분석은 반사경의 위치, 회전, 그리고 반사경의 형상 정밀도에 대해 수행하였다. 분석 결과, 반사경의 위치와 각도는 일반적인 제작 및 조립 공차보다 매우 작은 것을 확인하였다. 그리고 형상정밀도는 주경이 부경보다 민감하였으며 자승 제곱 평균제곱근 (root-mean-square) 32 nm로 가장 민감한 결과가 나왔다.

  • PDF

Shape Design Sensitivity Analysis of Supercavitating Flow Problem (초공동(超空洞) 유동 문제의 형상 설계민감도 해석)

  • Choi, Joo-Ho;Kwak, Hyun-Gu;Grandhi, R.V.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1320-1327
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in supercavitating flow problem. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in potential flow problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design in potential flow problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-to-use features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem is chosen to illustrate the efficiency of the proposed methodology. Implementation issues for the sensitivity analysis and optimization procedure are also addressed in this flow problem.