• Title/Summary/Keyword: Utilization Efficiency

Search Result 1,995, Processing Time 0.027 seconds

Parametric Design Analysis of a Pressurized Hybrid System Combining Gas Turbine and Solid Oxide Fuel Cell (가스터빈과 고체산화물 연료전지를 결합한 가압형 하이브리드 시스템의 설계변수 해석)

  • Jeong, Young-Hyun;Kim, Tong-Seop;Kim, Jae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1605-1612
    • /
    • 2002
  • Thermodynamic performance analysis has been carried out for a hybrid electric power generation system combining a gas turbine and a solid oxide fuel cell and operating at over-atmospheric pressure. Performance characteristics with respect to main design parameters such as maximum temperature and pressure ratio are examined in detail. Effects of other important design parameters are investigated including fuel cell internal parameters such as fuel utilization factor, steam/carbon ratio and current density, and system parameters such as recuperator efficiency and compressor inlet temperature.

Packet Scheduling in Interactive Satellite Return Channels for Mobile Multimedia Services Using Hybrid CDMA/TDMA

  • Lee Ki-Dong;Kim Ho-Kyom;Lee Ho-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.744-748
    • /
    • 2003
  • Developing an interactive satellite multi­media system, such as a digital video broadcasting (DVB) return channel via satellite (RCS) system, is gaining popularity over the world To accommodate the increasing traffic demand we are motivated to investigate an alternative for improving return channel utilization We develop an efficient method for optimal packet scheduling in an interactive satellite multimedia system using hybrid CDMA/TDMA channels. We formulate the timeslot-code assignment problem as a binary integer programming (BIP) problem, where the throughput maximization is the objective, and decompose this BIP problem into two sub-problems for the purpose of solution efficiency. With this decomposition, we promote the computational efficiency in finding the optimal solution of the original BIP problem Since 2001, ETRI has been involved in a development project where we have successfully completed an initial system integration test on broadband mobile Internet access via Ku-band channels using the proposed resource allocation algorithm.

  • PDF

Performance Evaluation of Distributed Clustering Protocol under Distance Estimation Error

  • Nguyen, Quoc Kien;Jeon, Taehyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.11-15
    • /
    • 2018
  • The application of Wireless Sensor Networks requires a wise utilization of limited energy resources. Therefore, a wide range of routing protocols with a motivation to prolong the lifetime of a network has been proposed in recent years. Hierarchical clustering based protocols have become an object of a large number of studies that aim to efficiently utilize the limited energy of network components. In this paper, the effect of mismatch in parameter estimation is discussed to evaluate the robustness of a distanced based algorithm called distributed clustering protocol in homogeneous and heterogeneous environment. For quantitative analysis, performance simulations for this protocol are carried out in terms of the network lifetime which is the main criteria of efficiency for the energy limited system.

Design and Performance Analysis of Coreless Axial-Flux Permanent-Magnet Generator for Small Wind Turbines

  • Chung, Dae-Won;You, Yong-Min
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.273-281
    • /
    • 2014
  • This paper presents an innovative design for a low-speed, direct-drive, axial-flux permanent-magnet (AFPM) generator with a coreless stator and rotor that is intended for application to small wind turbine power generation systems. The performance of the generator is evaluated and optimized by means of comprehensive 3D electromagnetic finite element analysis. The main focus of this study is to improve the power output and efficiency of wind power generation by investigating the electromagnetic and structural features of a coreless AFPM generator. The design is validated by comparing the performance achieved with a prototype. The results of our comparison demonstrate that the proposed generator has a number of advantages such as a simpler structure, higher efficiency over a wide range of operating speeds, higher energy yield, lighter weight and better power utilization than conventional machines. It would be possible to manufacture low-cost, axial-flux permanent-magnet generators by further developing the proposed design.

Understanding Starch Utilization in the Small Intestine of Cattle

  • Harmon, David L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.915-922
    • /
    • 2009
  • Ruminants possess the capacity to digest very large amounts of starch. However, in many cases diets approach 60% starch and even small inefficiencies present opportunities for energetic losses. Ruminal starch digestion is typically 75-80% of starch intake. On average, 35-60% of starch entering the small intestine is degraded. Of the fraction that escapes small-intestinal digestion, 35-50% is degraded in the large intestine. The low digestibility in the large intestine and the inability to reclaim microbial cells imposes a large toll on post-ruminal digestive efficiency. Therefore, digestibility in the small intestine must be optimized. The process of starch assimilation in the ruminant is complex and remains an avenue by which increases in production efficiency can be gained. A more thorough description of these processes is needed before we can accurately predict digestion occurring in the small intestine and formulate diets to optimize site of starch digestion.

An Improved MPPT Converter with Current Compensateion Method for Small Scaled PV-Applications (소규로 태양광 발전시스템을 위한 전류보상기법을 갖는 향상된 MPP 추적 컨버터)

  • Noh Hyeong-Ju;Lee Dong-Yun;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.580-583
    • /
    • 2002
  • An improved MPPT converter with current compensation method for small-scaled PV-applications is presented in this paper. The proposed method implements maximum power point tracking (MPPT) by variable reference current which is continuously changed during one sampling period. Therefore, the power transferred to the load is increased above $9\%$ by the proposed MPPT converter with current compensation method. As a result, the utilization efficiency of Photovoltaic (PV)-panel can be increased. In addition, as it doesn't use digital signal processor (DSP), this MPPT method has the merits of both a cost efficiency and a simple control circuit design. Therefore, it is considered that the proposed MPPT method is proper to low power, low cost PV-applications. The concept and control principles of the proposed MPPT method are explained in detail and its validity of the proposed method is verified through several simulated results.

  • PDF

Biofuel production from macroalgae toward bio-based economy (바이오 기반 경제를 위한 해조류 유래 바이오 연료 생산)

  • Lim, Hyun Gyu;Kwak, Donghun;Jung, Gyoo Yeol
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.8-16
    • /
    • 2014
  • Macroalgae has been strongly touted as an alternative biomass for biofuel production due to its higher photosynthetic efficiency, carbon fixation rate, and growth rate compared to conventional cellulosic plants. However, its unique carbohydrate composition and structure limits the utilization efficiency by conventional microorganisms, resulting in reduced growth rates and lower productivity. Nevertheless, recent studies have shown that it is possible to enable microorganisms to utilize various sugars from seaweeds and to produce some energy chemicals such as methane, ethanol, etc. This paper introduces the basic information on macroalgae and the overall conversion process from harvest to production of biofuels. Especially, we will review the successful efforts on microbial engineering through metabolic engineering and synthetic biology to utilize carbon sources from red and brown seaweed.

First and Second Law Analysis of Water-to-Water Heat Pump System (물-물 열펌프시스템에 관한 열역학 제1 및 제2 법칙 해석)

  • Lee, Se-Kyoun;Woo, Joung-Son;Ro, Jeong-Geun
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.87-95
    • /
    • 2007
  • Thermodynamic analysis of water-to-water heat pump system based on the first and second law of thermodynamics is carried out in this study. This analysis shows the distribution of irreversibilities throughout the system components and informs us of a potential improvements with the temperature condition changes. Source water temperature($T_A$), utilization water temperature($T_D$) and temperature differences (${\Delta}T_{AB}$, ${\Delta}T_{CD}$) are important factors to affect system performances such as component irreversibilities, exergetic efficiency and COPH. Advantages and disadvantages with these factors are discussed. Second law optimization phenomena with $T_A$ and ${\Delta}T_{AB}$ are also indicated.

Self-Interference Cancellation for Shared Band Transmission in Nonlinear Satellite Communication Channels

  • Jung, Sooyeob;Ryu, Joon Gyu;Oh, Deock-Gil;Yu, Heejung
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.771-781
    • /
    • 2017
  • For efficient spectral utilization of satellite channels, a shared band transmission technique is introduced in this paper. A satellite transmits multiple received signals from a gateway and terminal in the common frequency band by superimposing the signals. To improve the power efficiency as well as the spectral efficiency, a travelling wave tube amplifier in the satellite should operate near the saturation level. This causes a nonlinear distortion of the superimposed transmit signal. Without mitigating this nonlinear effect, the self-interference cannot be properly cancelled and the desired signal cannot be demodulated. Therefore, an adaptive compensation scheme for nonlinearity is herein proposed with the proper operation scenario. It is shown through simulations that the proposed shared band transmission approach with nonlinear compensation and self-interference cancellation can achieve an acceptable system performance in nonlinear satellite channels.

A New LEACH Algorithm for the Data Aggregation to Improve the Energy Efficiency in WSN

  • Subedi, Sagun;Lee, Sangil;Lee, Jaehee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.68-73
    • /
    • 2018
  • In recent years, the utilization of the WSN have been rapid. Energy consumption of these networks must be as low as possible. LEACH algorithm is one of the clustering technique. We modify the traditional LEACH algorithm in such way that it will be capable to self-organize large number of nodes and for saving communication resources such as processing time and initiation time. The efficiency of the network highly depends on how the algorithm divides cluster area and selects cluster head. The proposed algorithm can be evaluated through the extensive simulation the result we obtained shows that the life time of a network is increased when energy load is distributed equally among the sensor.