• Title/Summary/Keyword: Using time

Search Result 80,977, Processing Time 0.117 seconds

Effects of the color components of light-cured composite resin before and after polymerization on degree of conversion and flexural strength (광중합형 복합레진의 중합 전, 후의 색 성분이 중합률과 굴곡강도에 미치는 영향)

  • Yoo, Ji-A;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.4
    • /
    • pp.324-335
    • /
    • 2011
  • Objectives: This study investigated the effects of the color components of light-cured composite resin before and after polymerization on degree of conversion (DC) and biaxial flexural strength (FS). Materials and Methods: Four enamel shades (A1, A2, A3, A4) and two dentin shades (A2O, A3O) of Premisa (Kerr Co.) and Denfil (Vericom Co.) were evaluated on their CIE $L^*,\;a^*,\;b^*$ color components using the spectrophotometer before curing, after curing and at 7 day. The DC of same specimens were measured with Near-infrared spectrometer (Nexus, Thermo Nicolet Co.) at 2 hr after cure and at 7 day. Finally, the FS was obtained after all the other measurements were completed at 7 day. The correlations between each color component and DC and FS were evaluated. Results: The light-curing of composite resin resulted in color changes of Premisa in red-blue direction and Denfil in green-blue direction. The DC and FS were affected by product, time and shade (3-way ANOVA, p < 0.05) and product and shade (2-way ANOVA, p < 0.05), respectively. Premisa only showed a significant correlation between the DC and CIE $a^*$ component - before and after polymerization (Pearson product moment correlation, p < 0.05). The FS of Premisa showed significant negative correlations with CIE $a^*$ and CIE $b^*$ components. Conclusions: The DC and FS of the light-curing composite resin were affected by the color components of the material before and after polymerization.

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

COLOR DIFFERENCES BETWEEN RESIN COMPOSITES BEFORE- AND AFTER-POLYMERIZATION, AND SHADE GUIDES (복합레진의 광중합 전·후와 shade guide의 색차 비교)

  • Chon, Yi-Ju;Cho, Sung-Shik;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.299-309
    • /
    • 1999
  • The composite resin, due to its esthetic qualities, is considered the material of choice for restoration of anterior teeth. With respect to shade control, the direct-placement resin composites offer some distinct advantages over indirect restorative procedures. Visible-light-cured (VLC) composites allow dentists to match existing tooth shades or to create new shades and to evaluate them immediately at the time of restoration placement. Optimal intraoral color control can be achieved if optical changes occurring during application are minimized. An ideal VLC composite, then, would be one which is optically stable throughout the polymerization process. The shade guides of the resin composites are generally made of plastic, rather than the actual composite material, and do not accurately depict the true shade, translucency, or opacity of the resin composite after polymerization. So the numerous problems associated with these shade guides lead to varied and sometimes unpredictable results. The aim of this study was to assess the color changes of current resin composite restorative materials which occur as a result of the polymerization process and to compare the color differences between the shade guides provided with the products and the actual resin composites before- and after-polymerization. The results obtained from this investigation should provide the clinician with information which may aid in improved color match of esthetic restoration. Five light activated, resin-based materials (${\AE}$litefil, Amelogen Universal, Spectrum TPH VeridonFil-Photo, and Z100) and shade guides were used in this study. Three specimens of each material and shade combination were made. Each material was condensed inside a 1.5mm thick metal mold with 10mm diameter and pressed between glass plates. Each material was measured immediately before polymerization, and polymerized with Curing Light XL 3000 (3M Dental products, USA) visible light-activation unit for 60 seconds at each side. The specimens were then polished sequentially on wet sandpaper. Shade guides were ground with polishing stones and rubber points (Shofu) to a thickness of approximately 1.5mm. Color characteristics were performed with a spectrophotometer (CM-3500d, Minolta Co., LTD). A computer-controlled spectrophotometer was used to determine CIELAB coordinates ($L^*$, $a^*$ and $b^*$) of each specimen and shade guide. The CIELAB measurements made it possible to evaluate the amount of the color difference values (${\Delta}E{^*}ab$) of resin composites before the polymerization process and shade guides using the post-polishing color of the composite as a control, CIE standard D65 was used as the light source. The results were as follows. 1. Each of the resin composites evaluated showed significant color changes during light-curing process. All the resin composites evaluated except all the tested shades of 2100 showed unacceptable level of color changes (${\Delta}E{^*}ab$ greater than 3.3) between pre-polymerization and post-polishing state. 2. Color differences between most of the resin composites tested and their corresponding shade guides were acceptable but those between C2 shade of ${\AE}$litefil and IE shade of Amelogen Universal and their respective shade guides exceeded what is acceptable. 3. Comparison of the mean ${\Delta}E{^*}ab$ values of materials revealed that Z100 showed the least overall color change between pre-polymerization and post-polishing state followed by ${\AE}$litefil, VeridonFil-Photo, Spectrum TPH, and Amelogen Universal in the order of increasing change and Amelogen Universal. Spectrum TPH, 2100, VeridonFil-Photo and ${\AE}$litefil for the color differences between actual resin and shade guide. 4. In the clinical environment, the shade guide is the better choice than the shade of the actual resin before polymerization when matching colors. But, it is recommended that custom shade guides be made from resin material itself for better color matching.

  • PDF

Soil Characteristics according to the Geological Condition of Soil Slopes in Landslide Area (산사태지역 토층사면의 지질조건별 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.359-371
    • /
    • 2006
  • In this study, the soil characteristics are analyzed using the result of various soil tests as an object of the soil layer of natural slopes in landslides areas composed with gneiss, granite, and the tertiary sedimentary rock. To investigate the soil characteristics according to landslide and non landslide areas, soils are sampled from Jangheung, Sangju and Pohang. The landslides at three areas are occurred due to heavy rainfall in same time. The geology of Jangheung area, Sangju area and Pohang area is gneiss, granite, and the tertiary sedimentary rock, respectively. On the basis of the landslide data and the result of soil test, the soil characteristics at the landslide area and the differentiation between landslide area and non landslide area are analyzed. However soil characteristics have a little differentiation to geological condition, the uniformity coefficient and the coefficient of gradation of soils at the landslide area is larger than those of soils at the non landslide area. Also, the proportion of fine particle of soils at the landslide area is higher. The plastic limit of soils sampled from the granite and the sedimentary rock regions is larger than that sampled from the gneiss region. However the liquid limit is irrelevant to the geological condition. Also, the consistency of soils at the landslide area is smaller. The natural moisture content of soils in the sedimentary rock regions is larger than that of the granite and gneiss. It is mainly influenced by mineral composition, soil layer structure, weathering condition, and so on. The soils sampled from landslide area have higher porosity and lower density than those from non landslide area. It means that the soils of landslide area have poor particle size distribution and loose density. Therefore, the terrain slope with poor distribution and loose density is vulnerable to occur in landslides. Also, landslides are occurred in the terrain slope with high permeability. The permeability is mainly influenced by the soil characteristics such as particle size distribution, porosity, particle structure, and the geological origins such as weathering, sedimentary environment. Meanwhile, the shear strength of soils is little difference according to the geological condition. But, the internal friction angle of soils sampled from the landslide area is lower than that of soils from the non landslide area. Therefore, the terrain slope with low internal friction angle is more vulnerable to the landslide.

Evaluation of Groundwater Quality Deterioration using the Hydrogeochemical Characteristics of Shallow Portable Groundwater in an Agricultural Area (수리지화학적 특성 분석을 이용한 농촌 마을 천부 음용지하수의 수질 저하 원인 분석)

  • Yang, Jae Ha;Kim, Hyun Koo;Kim, Moon Su;Lee, Min Kyeong;Shin, In Kyu;Park, Sun Hwa;Kim, Hyoung Seop;Ju, Byoung Kyu;Kim, Dong Su;Kim, Tae Seung
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.533-545
    • /
    • 2015
  • Spatial and seasonal variations in hydrogeochemical characteristics and the factors affecting the deterioration in quality of shallow portable groundwater in an agricultural area are examined. The aquifer consists of (from the surface to depth) agricultural soil, weathered soil, weathered rock, and bedrock. The geochemical signatures of the shallow groundwater are mostly affected by the NO3 and Cl contaminants that show a gradual downward increase in concentration from the upper area, due to the irregular distribution of contamination sources. The concentrations of the major cations do not varied with the elapsed time and the NO3 and Cl ions, when compared with concentrations in background groundwater, increase gradually with the distance from the upper area. This result suggests that the water quality in shallow groundwater deteriorates due to contaminant sources at the surface. The contaminations of the major contaminants in groundwater show a positive linear relationship with electrical conductivity, indicating the deterioration in water quality is related to the effects of the contaminants. The relationships between contaminant concentrations, as inferred from the ternary plots, show the contaminant concentrations in organic fertilizer are positively related to concentrations of NO3, Cl, and SO42− ions in the shallow portable groundwaters, which means the fertilizer is the main contaminant source. The results also show that the deterioration in shallow groundwater quality is caused mainly by NO3 and Cl derived from organic fertilizer with additional SO42− contaminant from livestock wastes. Even though the concentrations of the contaminants within the shallow groundwaters and the contaminant sources are largely variable, it is useful to consider the ratio of contaminant concentrations and the relationship between contaminants in groundwater samples and in the contaminant source when analyzing deterioration in water quality.

Structural Features of Various Trichomes in Vitex negundo during Development (방향성 좀목형(Vitex negundo)모용의 구조적 분화발달)

  • Lee, Seung-Hee;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.36 no.1
    • /
    • pp.35-45
    • /
    • 2006
  • Plants of Vitex negundo are known to develop numerous trichomes throughout their body, where certain trichome types have been believed to be one of the plausible structures for the unique scents. In the current study. structural aspects of the trichomes have been examined in leaves and stems of Vitex negundo using TEM and SEM. Trichome types as well as structural changes that occurred in certain trichomes during secretion have been mainly focused. Three type of glandular trichomes and two types of non-glandular trichomes were developed in the epidermis of young and mature Vitex negundo plants. The glandular trichomes included the peltate type (Type 1), the capitate type (Type 2), and degraded capitate type (Type 3), whereas the non-glandular warty trichomes contained the multicellular (Types 4) and unicellular type (Type 5). Type 1 and 2 consisted of head and stalk cells, but their number and size were different. One secretory cavity was formed from the four head cells in the former, but only two head cells were involved in the latter. The cytoplasmic density in the head cell was quite high and in particular, sER and Golgi bodies were well developed. At initiation of their development, the cuticle layer of the head cells separated from the outer tangential wall to form a secretory cavity. Subsequently the cavity expanded acropetally and a large number of secretory vesicles continuously produced from the head cells until they filled the entire cavity. The cavity contained materials that would be soon discharged into intercellular spaces and/or into the air. The cavity began to decrease the volume by contracting at initial secretion but degrade rapidly within short time. It has been suggested that the mode of secretion in V. negundo is probably the eccrine secretion, since no break or rupture of the cavity has been observed during examination. Contrastingly Type 3 exhibited deterioration of the head cell at early stage. Type 4 was about $110{\sim}190{\mu}m$ long, consisting of $2{\sim}3$ cells, and distributed more in the adaxial epidermis compared to the abaxial surface. However, $20{\sim}30{\mu}m$ long Type 5 was extremely dense in both epidermis. Among several trichome types, Type 1 and 2 probably play an important role in discharging unique aromatic scents in plants of V. negundo.

A Study on the Manual Skills of Experimental Apparatuses of Preservice Elementary School Teachers (초등 예비교사의 실험 기구 조작 능력에 대한 연구)

  • Lee, So-Ree;Choi, Hyun-Dong;Lim, Jae-Keun;Shin, Se-Young;Yang, Il-Ho
    • Journal of Science Education
    • /
    • v.35 no.1
    • /
    • pp.80-90
    • /
    • 2011
  • The purpose of this study is to investigate manual skills of experimental apparatuses of pre-service elementary school teachers by examining and analyzing the process of experiments conducted by pre-teachers. For this study, 24 pre-service elementary school teachers were selected as the subjects and 4 experimental apparatuses were chosen through analyzing science textbooks from 3rd grade to 6th grade in elementary school. The selected experimental apparatuses were alcohol burner, dropper, microscope, instruments for making a prepared specimen. In addition, a task was carefully chosen to conduct an investigation in real settings and a series of evaluation standards was developed. While 3 subjects conducted experiments in separated and independent space at the same time, 3 collaborators observed the experiment process and recorded whether the subject met the evaluation standards or not, using O, X. The study suggests that pre-service elementary school teachers' manual skills of experimental apparatuses were under far below our projections. Particularly, in case of alcohol burner, the subjects showed lower ability to properly light the burners - which is to brush through the lampwick with fire - and to adjust the height of tripods according to the flame. Also, when it comes to dropper, they were not held the way they were supposed to be. In addition, when designing prepared specimen, the subjects used their hands instead of tweezers and often skipped the process of dripping water drop and wiping water with an oilpaper. Moreover, they did not know how to use a microscope properly so there were many times that they could not focus a microscope, failing to observe the objects. Educational implications are discussed.

  • PDF

Analyzing the Influence of Biomass and Vegetation Type to Soil Organic Carbon - Study on Seoseoul Lake Park and Yangjae Citizen's Forest - (바이오매스량과 식생구조가 토양 탄소함유량에 미치는 영향 분석 - 서서울호수공원과 양재 시민의 숲을 대상으로 -)

  • Tanaka, Riwako;Kim, Yoon-Jung;Ryoo, Hee-Kyung;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.123-134
    • /
    • 2014
  • Identification of methods to optimize the growth of a plant community, including the capacity of the soil to further sequester carbon, is important in urban design and planning. In this study, to construct and manage an urban park to mitigate carbon emissions, soil organic carbon of varying biomass, different park construction times, and a range of vegetation types were analyzed by measuring aboveground and belowground carbon in Seoseoul Lake Park and Yangjae Citizen's Forest. The urban parks were constructed during different periods; Seoseoul Lake Park was constructed in 2009, whereas Yangjae Citizen's Forest was constructed in 1986. To identify the differences in soil organic carbon in various plant communities and soil types, above and belowground carbon were measured based on biomass, as well as the physical and chemical features of the soil. Allometric equations were used to measure biomass. Soil total organic carbon (TOC) and chemical properties such as pH, cation exchange capacity (CEC), total nitrogen (TN), and soil microbes were analyzed. The analysis results show that the biomass of the Yangjae Citizen's Forest was higher than that of the Seoseoul Lake Park, indicating that older park has higher biomass. On the other hand, TOC was lower in the Yangjae Citizen's Forest than in the Seoseoul Lake Park; air pollution and acid rain probably changed the acidity of the soil in the Yangjae Citizen's Forest. Furthermore, TOC was higher in mono-layered plantation area compared to that in multi-layered plantation area. Improving the soil texture would, in the long term, result in better vegetation growth. To improve the soil texture of an urban park, park management, including pH control by using lime fertilization, soil compaction control, and leaving litter for soil nutrition is necessary.

Influences of Rate of Artificial Insemination Following Estrus Induction in Dog (개에서 발정유도가 인공수정효율에 미치는 영향)

  • 이영락;강태영;최상용
    • Journal of Embryo Transfer
    • /
    • v.18 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • Considerable attention has been focused on the cryopreservation of semen and estrus induction in dog, as consequence of poor productivity caused by long anestrus period, in order to enhance the productivity of youngs and to preserve the breeds. The objectives of this study were to improve reproductive efficiency of artificial insemination with fresh- and frozen-semen following estrus induction in dog. Fifty infertilie dogs (age 2~3 years) were selected fur the study and divided into three different estrus induction treatment groups. Group 1 : dogs (n=15) were given clomifene (0.1 mg/kg) orally f3r five days at 12 hr intervals. Croup 2: dogs (n=15) were given bromocriptine (50 $\mu$g/kg) orally for five days at 12 hr intervals, followed by single injection intravenously of 500 IU GnRH (Croup 3, n=20) when pro-estrus occurred. After being treated, the dogs were evaluated fur the rates of estrus induction and time interval lapses from treatment to beginning of the pro-estrus. The rates of pregnancy in estrus inducted dogs mated naturally compared to those inseminated artificially with ejaculated fresh semen and frozen-thawed semen. Estrus detection was performed using the method of vaginal smear and confirmed by the plasma progesterone assay. Pregnancy was confirmed by ultrasonograpy on day 25, 35 and 55 post insemination. The ejaculated semen was exposed to a mixture of Tris extender with cryoprotectant (Trisma, 81 mM; TES, 209 mM; citric acid, 6 mM; glucose, 5 mM; glycerol, 8%) and cryopreserved gradually by slow-cooling at 17 co above the surface of liquid nitrogen (L$N_2$) for 23 min. The use of fresh semen, the pregnancy rates were observed 66.6, 66.6, 75.0 and 83.3% in natural estrus, clomifene induced, bromocriptine induced and a combination of GnRH and bromocriptine, respectively. The use of frozen-thawed semen, the pregnancy rates were observed 66.6, 33.3, 50.0 and 60.0% in natural estrus, clomifene induced, bromocriptine induced and a combination of GnRH and bromocriptine, respectively. No difference was observed in the number of offspring produced among natural estrus and treated groups inseminated with fresh or frozen-thawed semen. In conclusion, there was no significant differences in the pregnancy rate of dogs between group treated with a combination of GnRH and bromocriptine and group treated clomifene or bromocriptine only. However, frozen-thawed semen can be used successfully fur artificial insemination in dog.

Physiological and Proteome Responses of Korean F1 maize (Zea mays L.) Hybrids to Water-deficit Stress during Tassel Initiation (옥수수 영양생장기 한발 스트레스에 의한 광합성의 생리적 반응 및 프로테옴 변화 분석)

  • Bae, Hwan Hee;Kwon, Young-Sang;Son, Beom-Young;Kim, Jung-Tae;Go, Young Sam;Kim, Sun-Lim;Baek, Seong-Bum;Shin, Seonghyu;Kim, Sang Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.422-431
    • /
    • 2019
  • Severe droughts in spring have occurred frequently in Korea in recent years, exerting a critical impact on corn yield. Therefore, it is necessary to find physiological and/or molecular indicators of the response to drought stress in maize plants. In this study, we investigated the effects of water-deficit stress on two Korean elite F1 maize hybrids, Ilmichal and Gwangpyeongok, by withholding water for 10 days at tassel initiation. The water deficit drastically reduced the relative leaf water content, leaf number, leaf area, and stem length, leading to dry matter reduction. Moreover, it reduced the SPAD values and stomatal conductance of leaves in drought-stressed plants of both hybrids. Importantly, the number of leaves and SPAD value were non-destructive and easy to investigate in response to water-deficit stress, suggesting that they may be useful indicators for screening drought-tolerant genetic resources. We detected more than 100 spots that were differentially accumulated under drought stress. Of these spots, a total of 21 protein spots (≥1.5-fold) from drought-exposed maize leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Functional annotation using Gene Ontology analysis revealed that most of the identified proteins were involved in carbohydrate metabolism, stress response fatty acid catabolism, photosynthesis, energy metabolism, and transport. The protein expression levels were increased in both Ilmichal and Gwangpyeongok, except for triosephosphate isomerase, fructose-bisphosphate aldolase, and an uncharacterized protein. The lactoylglutathione lyase delta (3,5)-delta (2,4)-dienoyl-CoA isomerase was overexpressed in Gwangpyeongok only. The results obtained from this study suggest that the drought-specific genes may be useful as molecular markers for screening drought-tolerant maize genotypes.