• Title/Summary/Keyword: Using a smartphone while walking

Search Result 16, Processing Time 0.023 seconds

User Interface for the 'Smombie Safe Go' App for Walking Safety (보행안전을 위한 앱서비스 'Smombie Safe Go' UI 연구)

  • Qiao, Xian Yue;Kim, Se-Hwa
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.10
    • /
    • pp.190-198
    • /
    • 2020
  • The development in smartphone technology has brought convenience to the life of the mankind, but an excessive use of smartphones sometimes causes various accidents. This research tried to propose an application service 'Smombie Safe Go' UI(User Interface) that allows the prevention of such accident while using smartphones when walking. For this, after research and user observations, produced walker journey maps and derived necessary main functions needed for safety, and the result showed that transparent interface, obstacle location alert, warning of dangers functions were necessary. To make the contents of the service more detailed, hazardous situations faced during smartphone use when walking were classified into 3 situations : 1. Obstacle appearing in front, 2. traffic lights on crosswalks 3. No traffic lights on crosswalks. Scenarios by hazardous situation were written, and the flow and UI of the app service that warns its users in each situation of hazards were designed. it is predicted that 'Smombie Safe Go' may be possible to be utilized as an app service that provides a safe walking experience for not only regular pedestrians but also the blind population.

Implementation of the Smombie (smartphone zombie) VR experience game using Google Cardboard and Bluetooth controller (구글 카드보드와 블루투스 컨트롤러를 이용한 스몸비(스마트폰 좀비) VR 체험 게임)

  • Kim, Ji-hyun;Seo, Mi-hye;Yang, Seon-young;Lee, Bo-hyun;Jin, I-seul;Park, Su e;Park, Jung-kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.212-215
    • /
    • 2017
  • In this paper, VR game was produced to inform the danger of using smartphone while walking and to raise awareness. In this VR games, you can experience Smombie (smart phone and zombie compound word) like a real situation by using Google card board and Bluetooth controller. Designed as a directions game of everyday material, the user indirectly experiences the dangerous situations that may actually occur in everyday life. In the virtual space, you can see the map on the smartphone, navigate the route, and send text messages using the controller during the game. We will explain how to implement smartphone map and send text message using controller which are the main functions of VR game.

  • PDF

A Study of Pedestrian Navigation Service System for Visual Disabilities (시각장애인용 길안내 서비스 시스템에 대한 연구)

  • Jang, Young Gun;Cha, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.4
    • /
    • pp.315-321
    • /
    • 2017
  • This paper is a study on the design and realization of Pedestrian navigation service system for the visually impaired. As it is an user interface considering visually impaired, voice recognition functioned smartphone was used as the input tool and the Osteoacusis headset, which can vocally guide directions while recognizing the surrounding environment sound, was used as the output tool. Unlike the pre-existing pedestrian navigation smartphone apps, the developed system guides walking direction by the scale of the left and right stereo sound of the headset wearing, and the voice guidance about the forked or curved path is given several meters before according to the speed of the user, and the user is immediately warned of walking opposite direction or proceeding off the path. The system can acquire stable and reliable directional information using the motion tracker with the dynamic heading accuracy of 1.5 degrees. In order to overcome GPS position error, we proposed a robust trajectory planning algorithm for position error. Experimental results for the developed system show that the average directional angle error is 6.82 degrees (standard deviation: 5.98) in the experimental path, which can be stated that it stably navigated the user relatively.

Development of Gait Monitoring System Based on 3-axis Accelerometer and Foot Pressure Sensors (3축 가속도 센서와 족압 감지 시스템을 활용한 보행 모니터링 시스템 개발)

  • Ryu, In-Hwan;Lee, Sunwoo;Jeong, Hyungi;Byun, Kihoon;Kwon, Jang-Woo
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.3
    • /
    • pp.199-206
    • /
    • 2016
  • Most Koreans walk having their toes in or out, because of their sedentary lifestyles. In addition, using smartphone while walking makes having a desirable walking posture even more difficult. The goal of this study is to make a simple system which easily analyze and inform any person his or her personal walking habit. To discriminate gait patterns, we developed a gait monitoring system using a 3-axis accelerometer and a foot pressure monitoring system. The developed system, with an accelerometer and a few pressure sensors, can acquire subject's foot pressure and how tilted his or her torso is. We analyzed the relationship between type of gate and sensor data using this information. As the result of analysis, we could find out that statistical parameters like standard deviation and root mean square are good for discriminating among torso postures, and k-nearest neighbor algorithm is good at clustering gait patterns. The developed system is expected to be applicable to medical or athletic fields at a low price.

Effect of backward walking training using an underwater treadmill on muscle strength, proprioception and gait ability in persons with stroke

  • Kum, Dong-Min;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.3
    • /
    • pp.120-126
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the effects of backward treadmill gait training between underwater and ground environments on strength, proprioception, and walking ability in persons with stroke. Design: Randomized control trial. Methods: Twenty eight subjects participated in the study in which they were randomly assigned to either the underwater backward treadmill training (UBTT) group (n=13) or the BTT group (n=15). In both groups, forward gait training was performed for 20 minutes on the ground treadmill. The UBTT group performed backward gait on an underwater treadmill for 20 minutes while the BTT group performed backward gait on a ground treadmill for 20 minutes. The gait training in each group was performed twice a week for a total of six weeks. Muscle strength, proprioception, and gait ability was assessed using a digital power meter, joint angle recurrence method using the smartphone protractor application, the Figure-of-Eight walk test (F8W) and the functional gait assessment (FGA) respectively. Results: Both groups showed significant improvement in strength, F8W and FGA scores after training (p<0.05). However, there was no statistically significant difference between the two groups. Both groups showed significant improvement in proprioception after training (p<0.05). In the comparison between the two groups, there was a greater significant change in the UBTT group for joint proprioception (p<0.05). Conclusions: In this study, it was found that both backward treadmill gait training programs were effective on strength, proprioception, and gait ability, and that underwater training was particularly effective on proprioception compared to ground training.

Updating Obstacle Information Using Object Detection in Street-View Images (스트리트뷰 영상의 객체탐지를 활용한 보행 장애물 정보 갱신)

  • Park, Seula;Song, Ahram
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.599-607
    • /
    • 2021
  • Street-view images, which are omnidirectional scenes centered on a specific location on the road, can provide various obstacle information for the pedestrians. Pedestrian network data for the navigation services should reflect the up-to-date obstacle information to ensure the mobility of pedestrians, including people with disabilities. In this study, the object detection model was trained for the bollard as a major obstacle in Seoul using street-view images and a deep learning algorithm. Also, a process for updating information about the presence and number of bollards as obstacle properties for the crosswalk node through spatial matching between the detected bollards and the pedestrian nodes was proposed. The missing crosswalk information can also be updated concurrently by the proposed process. The proposed approach is appropriate for crowdsourcing data as the model trained using the street-view images can be applied to photos taken with a smartphone while walking. Through additional training with various obstacles captured in the street-view images, it is expected to enable efficient information update about obstacles on the road.