• 제목/요약/키워드: Using Computer for Learning

검색결과 3,468건 처리시간 0.034초

Tumor Segmentation in Multimodal Brain MRI Using Deep Learning Approaches

  • Al Shehri, Waleed;Jannah, Najlaa
    • International Journal of Computer Science & Network Security
    • /
    • 제22권8호
    • /
    • pp.343-351
    • /
    • 2022
  • A brain tumor forms when some tissue becomes old or damaged but does not die when it must, preventing new tissue from being born. Manually finding such masses in the brain by analyzing MRI images is challenging and time-consuming for experts. In this study, our main objective is to detect the brain's tumorous part, allowing rapid diagnosis to treat the primary disease instantly. With image processing techniques and deep learning prediction algorithms, our research makes a system capable of finding a tumor in MRI images of a brain automatically and accurately. Our tumor segmentation adopts the U-Net deep learning segmentation on the standard MICCAI BRATS 2018 dataset, which has MRI images with different modalities. The proposed approach was evaluated and achieved Dice Coefficients of 0.9795, 0.9855, 0.9793, and 0.9950 across several test datasets. These results show that the proposed system achieves excellent segmentation of tumors in MRIs using deep learning techniques such as the U-Net algorithm.

선형 회귀 분석법을 이용한 머신 러닝 기반의 SOH 추정 알고리즘 (Machine Learning-based SOH Estimation Algorithm Using a Linear Regression Analysis)

  • 강승현;노태원;이병국
    • 전력전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.241-248
    • /
    • 2021
  • A battery state-of-health (SOH) estimation algorithm using a machine learning-based linear regression method is proposed for estimating battery aging. The proposed algorithm analyzes the change trend of the open-circuit voltage (OCV) curve, which is a parameter related to SOH. At this time, a section with high linearity of the SOH and OCV curves is selected and used for SOH estimation. The SOH of the aged battery is estimated according to the selected interval using a machine learning-based linear regression method. The performance of the proposed battery SOH estimation algorithm is verified through experiments and simulations using battery packs for electric vehicles.

지리정보시스템 기반 지리학습 코스웨어의 개발 (A Development of A Geography Learning Courseware Based on GIS.)

  • 신창선;정영식;주수종
    • 정보처리학회논문지A
    • /
    • 제9A권1호
    • /
    • pp.105-112
    • /
    • 2002
  • 본 논문은 지리학습의 시각 및 공간의 학습효과를 향상시키기 위해 지리정보시스템 기반의 코스웨어를 개발하는데 목적을 둔다. 기존의 코스웨어는 학습자에게 단순히 텍스트나 이미지와 같은 시각적인 정보만을 제공하기 위해 학습자의 학습의욕을 제어할 수 있도록 했다. 이러한 코스웨어를 본 논문에서는 지리학습 시스템으로 정의한다. 본 지리학습시스템은 학습평가 후에 이루어지는 피드백을 통해 완전학습과 반복학습이 가능하다. 또한 학습자는 구현한 지리학습 응용모듈을 이용하여 직접적인 학습참여와 웹사이트에서의 정보검색이 가능하다.

현실 세계에서의 로봇 파지 작업을 위한 정책/가치 심층 강화학습 플랫폼 개발 (Development of an Actor-Critic Deep Reinforcement Learning Platform for Robotic Grasping in Real World)

  • 김태원;박예성;김종복;박영빈;서일홍
    • 로봇학회논문지
    • /
    • 제15권2호
    • /
    • pp.197-204
    • /
    • 2020
  • In this paper, we present a learning platform for robotic grasping in real world, in which actor-critic deep reinforcement learning is employed to directly learn the grasping skill from raw image pixels and rarely observed rewards. This is a challenging task because existing algorithms based on deep reinforcement learning require an extensive number of training data or massive computational cost so that they cannot be affordable in real world settings. To address this problems, the proposed learning platform basically consists of two training phases; a learning phase in simulator and subsequent learning in real world. Here, main processing blocks in the platform are extraction of latent vector based on state representation learning and disentanglement of a raw image, generation of adapted synthetic image using generative adversarial networks, and object detection and arm segmentation for the disentanglement. We demonstrate the effectiveness of this approach in a real environment.

Learning Media on Mathematical Education based on Augmented Reality

  • Kounlaxay, Kalaphath;Shim, Yoonsik;Kang, Shin-Jin;Kwak, Ho-Young;Kim, Soo Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.1015-1029
    • /
    • 2021
  • Modern technology offers many ways to enhance teaching and learning that in turn promote the development of tools for educational activities both inside and outside the classroom. Many educational programs using the augmented reality (AR) technology are being widely used to provide supplementary learning materials for students. This paper describes the potential and challenges of using GeoGebra AR in mathematical studies, whereby students can view 3D geometric objects for a better understanding of their structure, and verifies the feasibility of its use based on experimental results. The GeoGebra software can be used to draw geometric objects, and 3D geometric objects can be viewed using AR software or AR applications on mobile phones or computer tablets. These could provide some of the required materials for mathematical education at high schools or universities. The use of the GeoGebra application for education in Laos will be particularly discussed in this paper.

Android Malware Detection using Machine Learning Techniques KNN-SVM, DBN and GRU

  • Sk Heena Kauser;V.Maria Anu
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.202-209
    • /
    • 2023
  • Android malware is now on the rise, because of the rising interest in the Android operating system. Machine learning models may be used to classify unknown Android malware utilizing characteristics gathered from the dynamic and static analysis of an Android applications. Anti-virus software simply searches for the signs of the virus instance in a specific programme to detect it while scanning. Anti-virus software that competes with it keeps these in large databases and examines each file for all existing virus and malware signatures. The proposed model aims to provide a machine learning method that depend on the malware detection method for Android inability to detect malware apps and improve phone users' security and privacy. This system tracks numerous permission-based characteristics and events collected from Android apps and analyses them using a classifier model to determine whether the program is good ware or malware. This method used the machine learning techniques KNN-SVM, DBN, and GRU in which help to find the accuracy which gives the different values like KNN gives 87.20 percents accuracy, SVM gives 91.40 accuracy, Naive Bayes gives 85.10 and DBN-GRU Gives 97.90. Furthermore, in this paper, we simply employ standard machine learning techniques; but, in future work, we will attempt to improve those machine learning algorithms in order to develop a better detection algorithm.

Machine Learning Techniques for Speech Recognition using the Magnitude

  • Krishnan, C. Gopala;Robinson, Y. Harold;Chilamkurti, Naveen
    • Journal of Multimedia Information System
    • /
    • 제7권1호
    • /
    • pp.33-40
    • /
    • 2020
  • Machine learning consists of supervised and unsupervised learning among which supervised learning is used for the speech recognition objectives. Supervised learning is the Data mining task of inferring a function from labeled training data. Speech recognition is the current trend that has gained focus over the decades. Most automation technologies use speech and speech recognition for various perspectives. This paper demonstrates an overview of major technological standpoint and gratitude of the elementary development of speech recognition and provides impression method has been developed in every stage of speech recognition using supervised learning. The project will use DNN to recognize speeches using magnitudes with large datasets.

An Efficient E-learning and Internet Service Provision for Rural Areas Using High-Altitude Platforms during COVID-19 Pan-Demic

  • Sameer Alsharif;Rashid A. Saeed;Yasser Albagory
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.71-82
    • /
    • 2024
  • This paper proposes a new communication system for e-learning applications to mitigate the negative impacts of COVID-19 where the online massive demands impact the current commu-nications systems infrastructures and capabilities. The proposed system utilizes high-altitude platforms (HAPs) for fast and efficient connectivity provision to bridge the communication in-frastructure gap in the current pandemic. The system model is investigated, and its performance is analyzed using adaptive antenna arrays to achieve high quality and high transmission data rates at the student premises. In addition, the single beam and multibeam HAP radio coverage scenarios are examined using tapered uniform concentric circular arrays to achieve feasible communication link requirements.

Classification of Apple Tree Leaves Diseases using Deep Learning Methods

  • Alsayed, Ashwaq;Alsabei, Amani;Arif, Muhammad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권7호
    • /
    • pp.324-330
    • /
    • 2021
  • Agriculture is one of the essential needs of human life on planet Earth. It is the source of food and earnings for many individuals around the world. The economy of many countries is associated with the agriculture sector. Lots of diseases exist that attack various fruits and crops. Apple Tree Leaves also suffer different types of pathological conditions that affect their production. These pathological conditions include apple scab, cedar apple rust, or multiple diseases, etc. In this paper, an automatic detection framework based on deep learning is investigated for apple leaves disease classification. Different pre-trained models, VGG16, ResNetV2, InceptionV3, and MobileNetV2, are considered for transfer learning. A combination of parameters like learning rate, batch size, and optimizer is analyzed, and the best combination of ResNetV2 with Adam optimizer provided the best classification accuracy of 94%.

시 공간 정규화를 통한 딥 러닝 기반의 3D 제스처 인식 (Deep Learning Based 3D Gesture Recognition Using Spatio-Temporal Normalization)

  • 채지훈;강수명;김해성;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제21권5호
    • /
    • pp.626-637
    • /
    • 2018
  • Human exchanges information not only through words, but also through body gesture or hand gesture. And they can be used to build effective interfaces in mobile, virtual reality, and augmented reality. The past 2D gesture recognition research had information loss caused by projecting 3D information in 2D. Since the recognition of the gesture in 3D is higher than 2D space in terms of recognition range, the complexity of gesture recognition increases. In this paper, we proposed a real-time gesture recognition deep learning model and application in 3D space using deep learning technique. First, in order to recognize the gesture in the 3D space, the data collection is performed using the unity game engine to construct and acquire data. Second, input vector normalization for learning 3D gesture recognition model is processed based on deep learning. Thirdly, the SELU(Scaled Exponential Linear Unit) function is applied to the neural network's active function for faster learning and better recognition performance. The proposed system is expected to be applicable to various fields such as rehabilitation cares, game applications, and virtual reality.