• Title/Summary/Keyword: User safety

Search Result 1,247, Processing Time 0.028 seconds

Economic Analysis of Concrete Panel Replacement of PSC Bridge with Embedded Demountable Shear Connector (매립형 분리식 전단연결재를 적용한 PSC교 콘크리트 바닥판 교체공사의 경제성 분석)

  • Soon-Hwan, Lee;Jong-Eon, Kim;Jae-Gyu, Kim;Se-Hyun, Park;Dae-Sung, Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.376-385
    • /
    • 2022
  • The embedded demountable shear connector was developed in preparation for replacement works due to deterioration and damage to the bridge panel of the PSC girder bridge which is a road infrastructure directly related to the safety and convenience of the people. The demountable shear connector minimizes crushing works in the demolition process of the panel, and it is easy to re-construct the shear connector for replacement work. The economic feasibility of the PSC girder bridge using the embedded demountable shear connector compared to the existing construction method was analyzed from the perspective of road users (people) by calculating and comparing the cost of road users caused by traffic blocking during each construction method.

A Study on the Architectural Planning of the Refuge Areas in Geriatric Hospitals Considering Horizontal Evacuation of the Elderly (노인요양병원에서 고령자의 수평 피난을 고려한 대피공간의 건축계획에 관한 연구)

  • Kim, Mijung;Kweon, Jihoon
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.29 no.3
    • /
    • pp.7-15
    • /
    • 2023
  • Purpose: This study was conducted with the aim of presenting spatial planning directions for evacuation spaces based on an analysis of the performance of horizontal evacuation during the early stages of fire incidents in a geriatric hospital. Methods: Based on a review of previous studies, the research model was designed by establishing occupancy conditions, evacuation, and fire scenarios. The analysis model was developed by considering vulnerable areas in terms of evacuation movement and analyzing the results of evacuation performance. Furthermore, the study analyzed the improvement in evacuation performance by arranging refuge areas. Results: The results of the study are as follows. Firstly, vulnerability spots were identified in terms of evacuation performance by schematizing Required Safe Egress Time, Available Safe Egress Time, and their differences. Secondly, the Required Safe Egress Time in the adjacent public spaces along the escape routes of occupants was found to be higher compared to the Available Safe Egress Time. Thirdly, the results of the correlation analysis between the difference in Available Safe Egress Time and Required Safe Egress Time during the early stages of a fire, as well as their constituent factors, demonstrated that user congestion is a more significant factor in compromising evacuation safety than the physical changes in the fire condition. Fourthly, the analysis of evacuation time was conducted by designating refuge areas where occupants can evacuate within a sufficient timeframe. This led to a decrease in the Required Safe Egress Time. Implications: This study is expected to be used as data on the direction of evacuation space planning to improve the evacuation performance of Geriatric Hospital.

Diverse modeling techniques, parameters, and assumptions for nonlinear dynamic analysis of typical concrete bridges with different pier-to-deck connections: which to use and why

  • Morkos, B.N.;Farag, M.M.N.;Salem, S.;Mehanny, S.S.F.;Bakhoum, M.M.
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.245-261
    • /
    • 2022
  • Key questions to researchers interested in nonlinear analysis of skeletal structures are whether the distributed plasticity approach - albeit computationally demanding - is more reliable than the concentrated plasticity to adequately capture the extent and severity of the inelastic response, and whether force-based formulation is more efficient than displacement-based formulation without compromising accuracy. The present research focusing on performance-based seismic response of mid-span concrete bridges provides a pilot holistic investigation opting for some hands-on answers. OpenSees software is considered adopting different modeling techniques, viz. distributed plasticity (through either displacement-based or force-based elements) and concentrated plasticity via beam-with-hinges elements. The pros and cons of each are discussed based on nonlinear pushover analysis results, and fragility curves generated for various performance levels relying on incremental dynamic analyses under real earthquake records. Among prime conclusions, distributed plasticity modeling albeit inherently not relying on prior knowledge of plastic hinge length still somewhat depends on such information to ensure accurate results. For instance, displacement-based and force-based approaches secure optimal accuracy when dividing, for the former, the member into sub-elements, and satisfying, for the latter, a distance between any two consecutive integration points, close to the expected plastic hinge length. On the other hand, using beam-with-hinges elements is computationally more efficient relative to the distributed plasticity, yet with acceptable accuracy provided the user has prior reasonable estimate of the anticipated plastic hinge length. Furthermore, when intrusive performance levels (viz. life safety or collapse) are of concern, concentrated plasticity via beam-with-hinges ensures conservative predicted capacity of investigated bridge systems.

Study on Visual Communication Design of Wearable Computing Devices (웨어러블 컴퓨팅 디바이스를 이용한 시각 디자인 구현 및 연구)

  • Lee, Su Jin
    • Korea Science and Art Forum
    • /
    • v.34
    • /
    • pp.251-262
    • /
    • 2018
  • The purpose of this study is to understand how wearable computing devices are designed and how to design them in a technology based wearable device design research. Research is premised on the consideration of producers and consumers. There is wearable computer of eyeglasses, watches, clothes, and so on. The user can always wear these products comfort and use as part of the body without any sense of discomfort, and the goal is to supplement or double the ability of the human being. It should be easy to use them convenient, wear comfortable, safe and sociable at any time. For the satisfaction these conditions, the wearable computing devices have several factors. There are technical performances, visual aesthetics, Human body system and devices communication and safety. Furthermore, these factors have to match to operating system, real-time operating system and applied software. To comprehend wearable computing devices should be offered the design of the both software and hardware designed.

The Design of a Crutch as Mobility Aids for the Handicapped in the Lower Extremity (하지 장애인의 보행보조를 위한 목발 디자인 연구)

  • Yang, Sung Ho;Oh, Kwang Myung
    • Design Convergence Study
    • /
    • v.17 no.3
    • /
    • pp.55-70
    • /
    • 2018
  • This study was conducted as a part of long-term project on the development of a set of design guidelines for a crutch as mobility aids for the handicapped in the lower extremity and the suggestion a practical solution for a crutch design. The purpose of this study is to develop a design of a crutch and a set of prototypes that reflects the characteristics of crutch-gait and has a realistic possibility for mass production-based industry. TOGO, a axillary crutch as the result of this study, shows a number of characteristics distinguished from ordinary crutches. These are (1)Minimize the shock associated with planting of the crutch tips by improving the form and structure of crutch tip and axillary pad, (2)Ergonomically designed crutch in accordance with users' body movement while walking on crutches, (3)Easy length control to maximize mobility and maneuverability by changing the cross section of the crutch revolutionary, (4)Minimize possibilities of safety hazards, and (5)Attractive shape of the crutch to keep user self-esteem. The revolutionary crutch derived from this study results has been patented, and the company is seeking to mass-produce and find ways to commercialize it after reviewing the potential problems that may arise in the mass production environment.

Analysis of DC insulation and properties of epoxy/ceramic composites with nanosized ZnO/TiO2 fillers

  • Kwon, Jung-Hun;Kim, Yu-Min;Kang, Seong-Hwa;Kim, Pyung-Jung;Jung, Jong-Hoon;Lim, Kee-Joe
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.332-335
    • /
    • 2012
  • A molded transformer is maintenance-free, which makes it unnecessary to replace the insulating material, like in an oil-filled transformer, because the epoxy, which is a molded insulating resin, does not suffer variations in its insulating performance for heat cycles over a long time, as compared to insulating oil. In spite of these advantages, a molded transformer may still be accessed by the user, which is not good in regards to reliability or noise compared to the oil transformers. In particular, a distrust exists regarding reliability due to the long-term insulating performance. These properties have been studied in regards to the improvement of epoxy composites and molded transformer insulation. There have nevertheless been insufficient investigations into the insulation properties of epoxy composites. In this study, it is a researching of the epoxy for insulating material. In order to prepare the specimens, a main resin, a hardener, an accelerator, and a nano/micro filler were used. Varying amounts of TiO2 and ZnO nano fillers were added to the epoxy mixture along with a fixed amount of micro silica. This paper presents the DC insulation breakdown test, thermal expansion coefficient, and thermal conductivity results for the manufactured specimens. From these results, it has been found that the insulating performance of nano/micro epoxy composites is improved as compared to plain molded transformer insulation, and that nano/micro epoxy composites contribute to the reliability and compactness of molded transformers.

Research on the support system and reinforcement range of cross passage tunnel (피난연결통로터널의 지보패턴 및 보강범위 연구)

  • Jung, Min;Han, Ki-Hwan;Park, Jin-Won;Baek, Kyung-Min;Moon, Hoon-Ki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.201-213
    • /
    • 2010
  • Recently, plans of tunnel and construction have increased. Unfortunately, the more we have tunnels, the more we have accidents in there. Because an accident or a fire in the tunnel is fatal to user safety, social concerns are focusing on the disaster prevention facilities. Cross passage tunnel is regarded as one of the useful disaster prevention facilities, which is increasing, while there were only few studies about the support system. This study tried to verify whether the support system is appropriate or not with empirical methods-theoretical methods and back analysis using measurement data. Additionally, we also looked into the range of reinforcement in accordance with strength/stress ratio of rock mass.

Development of gripping force and durability test standard for myoelectric prosthetic hand (근전전동의수의 파지력 및 내구성 시험 표준 개발)

  • Gook Chan Cha;Suk-Min Lee;Ki-Won Choi;Sangsoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.393-399
    • /
    • 2023
  • Upper limb amputees wear an upper limb prosthesis for both aesthetic purposes and functional necessity, and in particular, in the case of amputee with both hands, it is essential to wear a myoelectric prosthetic hand capable of gripping action. The prosthetic hand operated by the EMG signal of the remaining muscles is a public insurance benefit item of the Industrial Accident Compensation Insurance, and test method standards are needed to be developed for the safety of the user and the effectiveness of the product performance. In this study, we developed systems for measuring the gripping force of myoelectric hand prosthesis by a load cell and for durability test of the prosthesis over repeated use with a proximity sensor, and propose a test method standard. Since the international test method standard has not yet been established, it is expected that Korea will be able to play a leading role in this standardization field in the future.

The development of training platform for CiADS using cave automatic virtual environment

  • Jin-Yang Li ;Jun-Liang Du ;Long Gu ;You-Peng Zhang;Xin Sheng ;Cong Lin ;Yongquan Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2656-2661
    • /
    • 2023
  • The project of China initiative Accelerator Driven Subcritical (CiADS) system has been started to construct in southeast China's Guangdong province since 2019, which is expected to be checked and accepted in the year 2025. In order to make the students in University of Chinese Academy of Sciences (UCAS) better understand the main characteristic and the operation condition in the subcritical nuclear facility, the training platform for CiADS has been developed based on the Cave Automatic Virtual Environment (CAVE) in the Institute of Modern Physics Chinese Academy of Sciences (IMPCAS). The CAVE platform is a kind of non-head mounted virtual reality display system, which can provide the immersive experience and the alternative training platform to substitute the dangerous operation experiments with strong radioactivity. In this paper, the CAVE platform for the training scenarios in CiADS system has been presented with real-time simulation feature, where the required devices to generate the auditory and visual senses with the interactive mode have been detailed. Moreover, the three dimensional modeling database has been created for the different operation conditions, which can bring more freedom for the teachers to generate the appropriate training courses for the students. All the user-friendly features will offer a deep realistic impression to the students for the purpose of getting the required knowledge and experience without the large costs in the traditional experimental nuclear reactor.

Development of Bridge Maintenance Method based on Life-Cycle Performance and Cost (생애주기 성능 및 비용에 기초한 교량 유지관리기법 개발)

  • Park, Kyung Hoon;Kong, Jung Sik;Hwang, Yoon Koog;Cho, Hyo Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1023-1032
    • /
    • 2006
  • In this paper, a new method for the bridge maintenance is proposed to overcome the limit of the existing methods and to implement the preventive bridge maintenance system. The proposed method can establish the lifetime optimum maintenance strategy of the deteriorating bridges considering the life-cycle performance as well as the life-cycle cost. The lifetime performance of the deteriorating bridges is evaluated by the safety index based on the structural reliability and the condition index detailing the condition state. The life-cycle cost is estimated by considering not only the direct maintenance cost but also the user and failure cost. The genetic algorithm is applied to generate a set of maintenance scenarios which is the multi-objective combinatorial optimization problem related to the life-cycle cost and performance. The study examined the proposed method by establishing a maintenance strategy for the existing bridge and its advantages. The result shows that the proposed method can be effectively applied to deciding the bridge maintenance strategy.