• Title/Summary/Keyword: User Value

Search Result 1,773, Processing Time 0.031 seconds

A Study on Development of Evaluation Indicator for Golf Course User's Preference (골프장 이용자 선호도 평가지표 개발)

  • Seok, Young-Han;Moon, Seok-Ki;Lee, Eun-Yeob
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.25-34
    • /
    • 2010
  • This study was conducted to develop evaluation indicators to improve athletic performance and operational management of golf courses and the results of the research are as follows. Through theoretical research and a preliminary professional survey, 15 on-going evaluations of golf course composition and operational management and 55 sub-evaluation indices were rejected while 10 on-going evaluations and 52 sub-evaluation indicators were reconfigured as final for environmental-friendliness, level of member services, level of human service of game personnel, difficulties of course, management level of the course, fairness of operational management, accessibility and location characteristic, traditions and ambiance of the golf club, quality of course, and course layout. When analyzing the important decision factors in golf course user preference evaluation indicators, the following contributed in the order of higher to lower contributions: the management level of the course, excellence of the course, level of human services for personnel, course layout and environmental-friendliness. When identifying the path coefficient of golf course evaluation indicators, the curvature of a hole and the length of the course had a causal effect on the 'course layout' section. Tournament facilities and various shot values had a causal relationship with 'excellence of the course', in the order of higher to lower, and convenience of waiting and fair allocation of reservations for 'fairness of operational management'. The history of the golf course and its environmental characteristics, history and culture of the region have relatively higher causal effects on 'traditions of the golf club' and geographical conditions on 'accessibility and location characteristics', pesticide and fertilizer usage and water pollution on 'environmental-friendliness', and member benefit and kindness of employees on 'level of member services'. The kindness and expertise of the game personnel had a relatively higher causal effect on the 'level of human services of game personnel', the location of tenning area, and location of OB and hazards on 'difficulties of course', and rough conditions and obstacles management on 'management level of the course'. There is a need to complete a systematic evaluation index system for golf course user preferences through future studies for a more detailed assessment, as well as a process to verify these evaluation indicators by application to domestic and international golf courses.

A Study on the Estimation of Values of Individual Services of an Arboretum using the CE Method - Focused on Gyeongnam Arboretum - (CE 기법을 적용한 수목원의 편익제공 가치 추정 연구 - 경남수목원을 대상으로 -)

  • Kang, Kee-Rae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.51-59
    • /
    • 2013
  • This study was conducted to compare the sizes of effective values, which users recognize, according to the kinds of physical and psychological services provided by an arboretum, by estimating them in monetary values. As an analysis tool for this purpose, the CE(Choice Experiments) method, which is able to estimate effective value's size depending on each variable, was employed. For drawing up profiles for estimation of the values of individual services, 25 profiles were extracted using the orthogonal design of the SPSS statistical package, and questions of 75 pairs were created not to make each of the profiles overlapped. Then, each user was given three questions at five sets each and 3,510 data were used for the analysis. As the result, in relation to the attribute, 'The kinds of trees should be diversified 50% more than now.', firstly, users showed the biggest willingness to pay, based on the present level, and expressed intentions to pay 7,956 won, additionally. Secondly, the value of the path design that was unique than the present road design was estimated in 6,025 won, and when individual attendants guided visitors in the arboretum, they expressed intentions to pay nearly three times more expenses than when they were guided as a group. These results show that users in the Gyeongnam Arboretum recognized the highest effective values towards the collection and display of trees that are arboretum's original functions, and it was followed by the unique road design to observe a variety of dense trees well. This research could be useful in comparing or measuring particular effective values of users that central operators of arboretums want to know. Moreover, it would be suggested as an advanced research for providing basic data about value estimation of individual environmental goods not only in arboretums, but also in other fields.

Analysis of Dose Reduction Rate with Dose Modulation Technic Depending on BMI (PET/CT검사에서 Dose Modulation Technic 적용시 BMI에 따른 선량 감소율 분석)

  • Kim, Jung Wook;Park, Se Yun;Jo, Young Jun;Park, Jong Yeop
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.25-28
    • /
    • 2012
  • Purpose : It is important to reduce radiation dose associated with computed tomography (CT) scanning to as low as reasonably achievable (ALARA). With Dose Modulation Technic, user select a desired image quality and the system adapts tube current to obtain the desired image quality with greater radiation dose efficiency. In this paper, we presents a comprehensive description of fundamentals, clinical applications and radiation dose benefits of Dose Modulation Technic depending on Body Mass Index(BMI). Materials and Methods : In this study, 149 patients were examined(The mean age : $58{\pm}12.4$ years old). Biograph True Point 40 (Siemens, USA) and Gemini TF 64 (Philips. Cleveland) were used for equipment. When we used Care Dose 4D (Siemens, USA) and D-dom (Philips, Cleveland), we measured dose reduction and Computed Tomography Dose Index (CTDI) depending on BMI. Then we analyze data using SPSS Ver.18. Results : When we used Care Dose 4D, p-value is considered statistically significant by groups with the result that we compared Care Dose 4D with D-dom. On the other hand, p-value isn't considered statistically significant by groups using D-dom. Conclusion : Dose modulation based on the projection angle didn't affect degree of obesity. And When using Care Dose 4D, dose reduction rate in the normal patients were higher than the obese. In this study, there are errors on somato type. So I think more research have to be done. Then application of Dose Modulation technic can help in maintaining acceptable image quality while reducing radiation dose by 20-60% in most instances.

  • PDF

A Study on Public Interest-based Technology Valuation Models in Water Resources Field (수자원 분야 공익형 기술가치평가 시스템에 대한 연구)

  • Ryu, Seung-Mi;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.177-198
    • /
    • 2018
  • Recently, as economic property it has become necessary to acquire and utilize the framework for water resource measurement and performance management as the property of water resources changes to hold "public property". To date, the evaluation of water technology has been carried out by feasibility study analysis or technology assessment based on net present value (NPV) or benefit-to-cost (B/C) effect, however it is not yet systemized in terms of valuation models to objectively assess an economic value of technology-based business to receive diffusion and feedback of research outcomes. Therefore, K-water (known as a government-supported public company in Korea) company feels the necessity to establish a technology valuation framework suitable for technical characteristics of water resources fields in charge and verify an exemplified case applied to the technology. The K-water evaluation technology applied to this study, as a public interest goods, can be used as a tool to measure the value and achievement contributed to society and to manage them. Therefore, by calculating the value in which the subject technology contributed to the entire society as a public resource, we make use of it as a basis information for the advertising medium of performance on the influence effect of the benefits or the necessity of cost input, and then secure the legitimacy for large-scale R&D cost input in terms of the characteristics of public technology. Hence, K-water company, one of the public corporation in Korea which deals with public goods of 'water resources', will be able to establish a commercialization strategy for business operation and prepare for a basis for the performance calculation of input R&D cost. In this study, K-water has developed a web-based technology valuation model for public interest type water resources based on the technology evaluation system that is suitable for the characteristics of a technology in water resources fields. In particular, by utilizing the evaluation methodology of the Institute of Advanced Industrial Science and Technology (AIST) in Japan to match the expense items to the expense accounts based on the related benefit items, we proposed the so-called 'K-water's proprietary model' which involves the 'cost-benefit' approach and the FCF (Free Cash Flow), and ultimately led to build a pipeline on the K-water research performance management system and then verify the practical case of a technology related to "desalination". We analyze the embedded design logic and evaluation process of web-based valuation system that reflects characteristics of water resources technology, reference information and database(D/B)-associated logic for each model to calculate public interest-based and profit-based technology values in technology integrated management system. We review the hybrid evaluation module that reflects the quantitative index of the qualitative evaluation indices reflecting the unique characteristics of water resources and the visualized user-interface (UI) of the actual web-based evaluation, which both are appended for calculating the business value based on financial data to the existing web-based technology valuation systems in other fields. K-water's technology valuation model is evaluated by distinguishing between public-interest type and profitable-type water technology. First, evaluation modules in profit-type technology valuation model are designed based on 'profitability of technology'. For example, the technology inventory K-water holds has a number of profit-oriented technologies such as water treatment membranes. On the other hand, the public interest-type technology valuation is designed to evaluate the public-interest oriented technology such as the dam, which reflects the characteristics of public benefits and costs. In order to examine the appropriateness of the cost-benefit based public utility valuation model (i.e. K-water specific technology valuation model) presented in this study, we applied to practical cases from calculation of benefit-to-cost analysis on water resource technology with 20 years of lifetime. In future we will additionally conduct verifying the K-water public utility-based valuation model by each business model which reflects various business environmental characteristics.

Information Privacy Concern in Context-Aware Personalized Services: Results of a Delphi Study

  • Lee, Yon-Nim;Kwon, Oh-Byung
    • Asia pacific journal of information systems
    • /
    • v.20 no.2
    • /
    • pp.63-86
    • /
    • 2010
  • Personalized services directly and indirectly acquire personal data, in part, to provide customers with higher-value services that are specifically context-relevant (such as place and time). Information technologies continue to mature and develop, providing greatly improved performance. Sensory networks and intelligent software can now obtain context data, and that is the cornerstone for providing personalized, context-specific services. Yet, the danger of overflowing personal information is increasing because the data retrieved by the sensors usually contains privacy information. Various technical characteristics of context-aware applications have more troubling implications for information privacy. In parallel with increasing use of context for service personalization, information privacy concerns have also increased such as an unrestricted availability of context information. Those privacy concerns are consistently regarded as a critical issue facing context-aware personalized service success. The entire field of information privacy is growing as an important area of research, with many new definitions and terminologies, because of a need for a better understanding of information privacy concepts. Especially, it requires that the factors of information privacy should be revised according to the characteristics of new technologies. However, previous information privacy factors of context-aware applications have at least two shortcomings. First, there has been little overview of the technology characteristics of context-aware computing. Existing studies have only focused on a small subset of the technical characteristics of context-aware computing. Therefore, there has not been a mutually exclusive set of factors that uniquely and completely describe information privacy on context-aware applications. Second, user survey has been widely used to identify factors of information privacy in most studies despite the limitation of users' knowledge and experiences about context-aware computing technology. To date, since context-aware services have not been widely deployed on a commercial scale yet, only very few people have prior experiences with context-aware personalized services. It is difficult to build users' knowledge about context-aware technology even by increasing their understanding in various ways: scenarios, pictures, flash animation, etc. Nevertheless, conducting a survey, assuming that the participants have sufficient experience or understanding about the technologies shown in the survey, may not be absolutely valid. Moreover, some surveys are based solely on simplifying and hence unrealistic assumptions (e.g., they only consider location information as a context data). A better understanding of information privacy concern in context-aware personalized services is highly needed. Hence, the purpose of this paper is to identify a generic set of factors for elemental information privacy concern in context-aware personalized services and to develop a rank-order list of information privacy concern factors. We consider overall technology characteristics to establish a mutually exclusive set of factors. A Delphi survey, a rigorous data collection method, was deployed to obtain a reliable opinion from the experts and to produce a rank-order list. It, therefore, lends itself well to obtaining a set of universal factors of information privacy concern and its priority. An international panel of researchers and practitioners who have the expertise in privacy and context-aware system fields were involved in our research. Delphi rounds formatting will faithfully follow the procedure for the Delphi study proposed by Okoli and Pawlowski. This will involve three general rounds: (1) brainstorming for important factors; (2) narrowing down the original list to the most important ones; and (3) ranking the list of important factors. For this round only, experts were treated as individuals, not panels. Adapted from Okoli and Pawlowski, we outlined the process of administrating the study. We performed three rounds. In the first and second rounds of the Delphi questionnaire, we gathered a set of exclusive factors for information privacy concern in context-aware personalized services. The respondents were asked to provide at least five main factors for the most appropriate understanding of the information privacy concern in the first round. To do so, some of the main factors found in the literature were presented to the participants. The second round of the questionnaire discussed the main factor provided in the first round, fleshed out with relevant sub-factors. Respondents were then requested to evaluate each sub factor's suitability against the corresponding main factors to determine the final sub-factors from the candidate factors. The sub-factors were found from the literature survey. Final factors selected by over 50% of experts. In the third round, a list of factors with corresponding questions was provided, and the respondents were requested to assess the importance of each main factor and its corresponding sub factors. Finally, we calculated the mean rank of each item to make a final result. While analyzing the data, we focused on group consensus rather than individual insistence. To do so, a concordance analysis, which measures the consistency of the experts' responses over successive rounds of the Delphi, was adopted during the survey process. As a result, experts reported that context data collection and high identifiable level of identical data are the most important factor in the main factors and sub factors, respectively. Additional important sub-factors included diverse types of context data collected, tracking and recording functionalities, and embedded and disappeared sensor devices. The average score of each factor is very useful for future context-aware personalized service development in the view of the information privacy. The final factors have the following differences comparing to those proposed in other studies. First, the concern factors differ from existing studies, which are based on privacy issues that may occur during the lifecycle of acquired user information. However, our study helped to clarify these sometimes vague issues by determining which privacy concern issues are viable based on specific technical characteristics in context-aware personalized services. Since a context-aware service differs in its technical characteristics compared to other services, we selected specific characteristics that had a higher potential to increase user's privacy concerns. Secondly, this study considered privacy issues in terms of service delivery and display that were almost overlooked in existing studies by introducing IPOS as the factor division. Lastly, in each factor, it correlated the level of importance with professionals' opinions as to what extent users have privacy concerns. The reason that it did not select the traditional method questionnaire at that time is that context-aware personalized service considered the absolute lack in understanding and experience of users with new technology. For understanding users' privacy concerns, professionals in the Delphi questionnaire process selected context data collection, tracking and recording, and sensory network as the most important factors among technological characteristics of context-aware personalized services. In the creation of a context-aware personalized services, this study demonstrates the importance and relevance of determining an optimal methodology, and which technologies and in what sequence are needed, to acquire what types of users' context information. Most studies focus on which services and systems should be provided and developed by utilizing context information on the supposition, along with the development of context-aware technology. However, the results in this study show that, in terms of users' privacy, it is necessary to pay greater attention to the activities that acquire context information. To inspect the results in the evaluation of sub factor, additional studies would be necessary for approaches on reducing users' privacy concerns toward technological characteristics such as highly identifiable level of identical data, diverse types of context data collected, tracking and recording functionality, embedded and disappearing sensor devices. The factor ranked the next highest level of importance after input is a context-aware service delivery that is related to output. The results show that delivery and display showing services to users in a context-aware personalized services toward the anywhere-anytime-any device concept have been regarded as even more important than in previous computing environment. Considering the concern factors to develop context aware personalized services will help to increase service success rate and hopefully user acceptance for those services. Our future work will be to adopt these factors for qualifying context aware service development projects such as u-city development projects in terms of service quality and hence user acceptance.

A Study on the Critical Success Factors of Social Commerce through the Analysis of the Perception Gap between the Service Providers and the Users: Focused on Ticket Monster in Korea (서비스제공자와 사용자의 인식차이 분석을 통한 소셜커머스 핵심성공요인에 대한 연구: 한국의 티켓몬스터 중심으로)

  • Kim, Il Jung;Lee, Dae Chul;Lim, Gyoo Gun
    • Asia pacific journal of information systems
    • /
    • v.24 no.2
    • /
    • pp.211-232
    • /
    • 2014
  • Recently, there is a growing interest toward social commerce using SNS(Social Networking Service), and the size of its market is also expanding due to popularization of smart phones, tablet PCs and other smart devices. Accordingly, various studies have been attempted but it is shown that most of the previous studies have been conducted from perspectives of the users. The purpose of this study is to derive user-centered CSF(Critical Success Factor) of social commerce from the previous studies and analyze the CSF perception gap between social commerce service providers and users. The CSF perception gap between two groups shows that there is a difference between ideal images the service providers hope for and the actual image the service users have on social commerce companies. This study provides effective improvement directions for social commerce companies by presenting current business problems and its solution plans. For this, This study selected Korea's representative social commerce business Ticket Monster, which is dominant in sales and staff size together with its excellent funding power through M&A by stock exchange with the US social commerce business Living Social with Amazon.com as a shareholder in August, 2011, as a target group of social commerce service provider. we have gathered questionnaires from both service providers and the users from October 22, 2012 until October 31, 2012 to conduct an empirical analysis. We surveyed 160 service providers of Ticket Monster We also surveyed 160 social commerce users who have experienced in using Ticket Monster service. Out of 320 surveys, 20 questionaries which were unfit or undependable were discarded. Consequently the remaining 300(service provider 150, user 150)were used for this empirical study. The statistics were analyzed using SPSS 12.0. Implications of the empirical analysis result of this study are as follows: First of all, There are order differences in the importance of social commerce CSF between two groups. While service providers regard Price Economic as the most important CSF influencing purchasing intention, the users regard 'Trust' as the most important CSF influencing purchasing intention. This means that the service providers have to utilize the unique strong point of social commerce which make the customers be trusted rathe than just focusing on selling product at a discounted price. It means that service Providers need to enhance effective communication skills by using SNS and play a vital role as a trusted adviser who provides curation services and explains the value of products through information filtering. Also, they need to pay attention to preventing consumer damages from deceptive and false advertising. service providers have to create the detailed reward system in case of a consumer damages caused by above problems. It can make strong ties with customers. Second, both service providers and users tend to consider that social commerce CSF influencing purchasing intention are Price Economic, Utility, Trust, and Word of Mouth Effect. Accordingly, it can be learned that users are expecting the benefit from the aspect of prices and economy when using social commerce, and service providers should be able to suggest the individualized discount benefit through diverse methods using social network service. Looking into it from the aspect of usefulness, service providers are required to get users to be cognizant of time-saving, efficiency, and convenience when they are using social commerce. Therefore, it is necessary to increase the usefulness of social commerce through the introduction of a new management strategy, such as intensification of search engine of the Website, facilitation in payment through shopping basket, and package distribution. Trust, as mentioned before, is the most important variable in consumers' mind, so it should definitely be managed for sustainable management. If the trust in social commerce should fall due to consumers' damage case due to false and puffery advertising forgeries, it could have a negative influence on the image of the social commerce industry in general. Instead of advertising with famous celebrities and using a bombastic amount of money on marketing expenses, the social commerce industry should be able to use the word of mouth effect between users by making use of the social network service, the major marketing method of initial social commerce. The word of mouth effect occurring from consumers' spontaneous self-marketer's duty performance can bring not only reduction effect in advertising cost to a service provider but it can also prepare the basis of discounted price suggestion to consumers; in this context, the word of mouth effect should be managed as the CSF of social commerce. Third, Trade safety was not derived as one of the CSF. Recently, with e-commerce like social commerce and Internet shopping increasing in a variety of methods, the importance of trade safety on the Internet also increases, but in this study result, trade safety wasn't evaluated as CSF of social commerce by both groups. This study judges that it's because both service provider groups and user group are perceiving that there is a reliable PG(Payment Gateway) which acts for e-payment of Internet transaction. Accordingly, it is understood that both two groups feel that social commerce can have a corporate identity by website and differentiation in products and services in sales, but don't feel a big difference by business in case of e-payment system. In other words, trade safety should be perceived as natural, basic universal service. Fourth, it's necessary that service providers should intensify the communication with users by making use of social network service which is the major marketing method of social commerce and should be able to use the word of mouth effect between users. The word of mouth effect occurring from consumers' spontaneous self- marketer's duty performance can bring not only reduction effect in advertising cost to a service provider but it can also prepare the basis of discounted price suggestion to consumers. in this context, it is judged that the word of mouth effect should be managed as CSF of social commerce. In this paper, the characteristics of social commerce are limited as five independent variables, however, if an additional study is proceeded with more various independent variables, more in-depth study results will be derived. In addition, this research targets social commerce service providers and the users, however, in the consideration of the fact that social commerce is a two-sided market, drawing CSF through an analysis of perception gap between social commerce service providers and its advertisement clients would be worth to be dealt with in a follow-up study.

A Folksonomy Ranking Framework: A Semantic Graph-based Approach (폭소노미 사이트를 위한 랭킹 프레임워크 설계: 시맨틱 그래프기반 접근)

  • Park, Hyun-Jung;Rho, Sang-Kyu
    • Asia pacific journal of information systems
    • /
    • v.21 no.2
    • /
    • pp.89-116
    • /
    • 2011
  • In collaborative tagging systems such as Delicious.com and Flickr.com, users assign keywords or tags to their uploaded resources, such as bookmarks and pictures, for their future use or sharing purposes. The collection of resources and tags generated by a user is called a personomy, and the collection of all personomies constitutes the folksonomy. The most significant need of the folksonomy users Is to efficiently find useful resources or experts on specific topics. An excellent ranking algorithm would assign higher ranking to more useful resources or experts. What resources are considered useful In a folksonomic system? Does a standard superior to frequency or freshness exist? The resource recommended by more users with mere expertise should be worthy of attention. This ranking paradigm can be implemented through a graph-based ranking algorithm. Two well-known representatives of such a paradigm are Page Rank by Google and HITS(Hypertext Induced Topic Selection) by Kleinberg. Both Page Rank and HITS assign a higher evaluation score to pages linked to more higher-scored pages. HITS differs from PageRank in that it utilizes two kinds of scores: authority and hub scores. The ranking objects of these pages are limited to Web pages, whereas the ranking objects of a folksonomic system are somewhat heterogeneous(i.e., users, resources, and tags). Therefore, uniform application of the voting notion of PageRank and HITS based on the links to a folksonomy would be unreasonable, In a folksonomic system, each link corresponding to a property can have an opposite direction, depending on whether the property is an active or a passive voice. The current research stems from the Idea that a graph-based ranking algorithm could be applied to the folksonomic system using the concept of mutual Interactions between entitles, rather than the voting notion of PageRank or HITS. The concept of mutual interactions, proposed for ranking the Semantic Web resources, enables the calculation of importance scores of various resources unaffected by link directions. The weights of a property representing the mutual interaction between classes are assigned depending on the relative significance of the property to the resource importance of each class. This class-oriented approach is based on the fact that, in the Semantic Web, there are many heterogeneous classes; thus, applying a different appraisal standard for each class is more reasonable. This is similar to the evaluation method of humans, where different items are assigned specific weights, which are then summed up to determine the weighted average. We can check for missing properties more easily with this approach than with other predicate-oriented approaches. A user of a tagging system usually assigns more than one tags to the same resource, and there can be more than one tags with the same subjectivity and objectivity. In the case that many users assign similar tags to the same resource, grading the users differently depending on the assignment order becomes necessary. This idea comes from the studies in psychology wherein expertise involves the ability to select the most relevant information for achieving a goal. An expert should be someone who not only has a large collection of documents annotated with a particular tag, but also tends to add documents of high quality to his/her collections. Such documents are identified by the number, as well as the expertise, of users who have the same documents in their collections. In other words, there is a relationship of mutual reinforcement between the expertise of a user and the quality of a document. In addition, there is a need to rank entities related more closely to a certain entity. Considering the property of social media that ensures the popularity of a topic is temporary, recent data should have more weight than old data. We propose a comprehensive folksonomy ranking framework in which all these considerations are dealt with and that can be easily customized to each folksonomy site for ranking purposes. To examine the validity of our ranking algorithm and show the mechanism of adjusting property, time, and expertise weights, we first use a dataset designed for analyzing the effect of each ranking factor independently. We then show the ranking results of a real folksonomy site, with the ranking factors combined. Because the ground truth of a given dataset is not known when it comes to ranking, we inject simulated data whose ranking results can be predicted into the real dataset and compare the ranking results of our algorithm with that of a previous HITS-based algorithm. Our semantic ranking algorithm based on the concept of mutual interaction seems to be preferable to the HITS-based algorithm as a flexible folksonomy ranking framework. Some concrete points of difference are as follows. First, with the time concept applied to the property weights, our algorithm shows superior performance in lowering the scores of older data and raising the scores of newer data. Second, applying the time concept to the expertise weights, as well as to the property weights, our algorithm controls the conflicting influence of expertise weights and enhances overall consistency of time-valued ranking. The expertise weights of the previous study can act as an obstacle to the time-valued ranking because the number of followers increases as time goes on. Third, many new properties and classes can be included in our framework. The previous HITS-based algorithm, based on the voting notion, loses ground in the situation where the domain consists of more than two classes, or where other important properties, such as "sent through twitter" or "registered as a friend," are added to the domain. Forth, there is a big difference in the calculation time and memory use between the two kinds of algorithms. While the matrix multiplication of two matrices, has to be executed twice for the previous HITS-based algorithm, this is unnecessary with our algorithm. In our ranking framework, various folksonomy ranking policies can be expressed with the ranking factors combined and our approach can work, even if the folksonomy site is not implemented with Semantic Web languages. Above all, the time weight proposed in this paper will be applicable to various domains, including social media, where time value is considered important.

Resolving the 'Gray sheep' Problem Using Social Network Analysis (SNA) in Collaborative Filtering (CF) Recommender Systems (소셜 네트워크 분석 기법을 활용한 협업필터링의 특이취향 사용자(Gray Sheep) 문제 해결)

  • Kim, Minsung;Im, Il
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.137-148
    • /
    • 2014
  • Recommender system has become one of the most important technologies in e-commerce in these days. The ultimate reason to shop online, for many consumers, is to reduce the efforts for information search and purchase. Recommender system is a key technology to serve these needs. Many of the past studies about recommender systems have been devoted to developing and improving recommendation algorithms and collaborative filtering (CF) is known to be the most successful one. Despite its success, however, CF has several shortcomings such as cold-start, sparsity, gray sheep problems. In order to be able to generate recommendations, ordinary CF algorithms require evaluations or preference information directly from users. For new users who do not have any evaluations or preference information, therefore, CF cannot come up with recommendations (Cold-star problem). As the numbers of products and customers increase, the scale of the data increases exponentially and most of the data cells are empty. This sparse dataset makes computation for recommendation extremely hard (Sparsity problem). Since CF is based on the assumption that there are groups of users sharing common preferences or tastes, CF becomes inaccurate if there are many users with rare and unique tastes (Gray sheep problem). This study proposes a new algorithm that utilizes Social Network Analysis (SNA) techniques to resolve the gray sheep problem. We utilize 'degree centrality' in SNA to identify users with unique preferences (gray sheep). Degree centrality in SNA refers to the number of direct links to and from a node. In a network of users who are connected through common preferences or tastes, those with unique tastes have fewer links to other users (nodes) and they are isolated from other users. Therefore, gray sheep can be identified by calculating degree centrality of each node. We divide the dataset into two, gray sheep and others, based on the degree centrality of the users. Then, different similarity measures and recommendation methods are applied to these two datasets. More detail algorithm is as follows: Step 1: Convert the initial data which is a two-mode network (user to item) into an one-mode network (user to user). Step 2: Calculate degree centrality of each node and separate those nodes having degree centrality values lower than the pre-set threshold. The threshold value is determined by simulations such that the accuracy of CF for the remaining dataset is maximized. Step 3: Ordinary CF algorithm is applied to the remaining dataset. Step 4: Since the separated dataset consist of users with unique tastes, an ordinary CF algorithm cannot generate recommendations for them. A 'popular item' method is used to generate recommendations for these users. The F measures of the two datasets are weighted by the numbers of nodes and summed to be used as the final performance metric. In order to test performance improvement by this new algorithm, an empirical study was conducted using a publically available dataset - the MovieLens data by GroupLens research team. We used 100,000 evaluations by 943 users on 1,682 movies. The proposed algorithm was compared with an ordinary CF algorithm utilizing 'Best-N-neighbors' and 'Cosine' similarity method. The empirical results show that F measure was improved about 11% on average when the proposed algorithm was used

    . Past studies to improve CF performance typically used additional information other than users' evaluations such as demographic data. Some studies applied SNA techniques as a new similarity metric. This study is novel in that it used SNA to separate dataset. This study shows that performance of CF can be improved, without any additional information, when SNA techniques are used as proposed. This study has several theoretical and practical implications. This study empirically shows that the characteristics of dataset can affect the performance of CF recommender systems. This helps researchers understand factors affecting performance of CF. This study also opens a door for future studies in the area of applying SNA to CF to analyze characteristics of dataset. In practice, this study provides guidelines to improve performance of CF recommender systems with a simple modification.

  • Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

    • Hong, Taeho;Lee, Taewon;Li, Jingjing
      • Journal of Intelligence and Information Systems
      • /
      • v.22 no.1
      • /
      • pp.187-204
      • /
      • 2016
    • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

    Development of a Window Program for Searching CpG Island (CpG Island 검색용 윈도우 프로그램 개발)

    • Kim, Ki-Bong
      • Journal of Life Science
      • /
      • v.18 no.8
      • /
      • pp.1132-1139
      • /
      • 2008
    • A CpG island is a short stretch of DNA in which the frequency of the CG dinucleotide is higher than other regions. CpG islands are present in the promoters and exonic regions of approximately $30{\sim}60$% of mammalian genes so they are useful markers for genes in organisms containing 5-methylcytosine in their genomes. Recent evidence supports the notion that the hypermethylation of CpG island, by silencing tumor suppressor genes, plays a major causal role in cancer, which has been described in almost every tumor types. In this respect, CpG island search by computational methods is very helpful for cancer research and computational promoter and gene predictions. I therefore developed a window program (called CpGi) on the basis of CpG island criteria defined by D. Takai and P. A. Jones. The program 'CpGi' was implemented in Visual C++ 6.0 and can determine the locations of CpG islands using diverse parameters (%GC, Obs (CpG)/Exp (CpG), window size, step size, gap value, # of CpG, length) specified by user. The analysis result of CpGi provides a graphical map of CpG islands and G+C% plot, where more detailed information on CpG island can be obtained through pop-up window. Two human contigs, i.e. AP00524 (from chromosome 22) and NT_029490.3 (from chromosome 21), were used to compare the performance of CpGi and two other public programs for the accuracy of search results. The two other programs used in the performance comparison are Emboss-CpGPlot and CpG Island Searcher that are web-based public CpG island search programs. The comparison result showed that CpGi is on a level with or outperforms Emboss-CpGPlot and CpG Island Searcher. Having a simple and easy-to-use user interface, CpGi would be a very useful tool for genome analysis and CpG island research. To obtain a copy of CpGi for academic use only, contact corresponding author.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.