• Title/Summary/Keyword: User Simulation

Search Result 2,265, Processing Time 0.038 seconds

Development of Web-based Quality & Reliability System for Bootstrap on the Internet Environment (인터넷 환경에서 붓스트랩 품질 및 신뢰성 시스템의 개발)

  • Choi Sung woon;Lim In sup
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.1
    • /
    • pp.147-157
    • /
    • 2005
  • Recently, growth of internet causes rapid changes in many areas of statistics such as statistical computation and analysis. Especially, bootstrap is the most interesting statistical methods applying computer resampling simulation. In this paper, we try to present how to use a method of bootstrap on the internet. We also develop to user a statistical system which is programed with ASP for user to handle easily in manufacturing system.

Development of Simulator for Managing and Planning the Catenary System Using Current Map (전류 Map을 이용한 전차선로 용량관리 프로그램개발)

  • 오광해;이한민;창상훈
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.333-340
    • /
    • 2001
  • This paper presents development of the program which calculates the electric quantities such as current, voltage at each element of railway electrification system in static state. The purpose of this program is to estimate the adequacy of railway electrification system through simulations. And it contributes the estimations for optimal railway electrification system by calculating the maximum current and voltage. The simulation program is coded through GUI(Graphic User Interface) technique for user to operate easily.

  • PDF

Optimized Relay Node Deployment and Resource Allocation in LTE-Advanced Relay Networks

  • Fenghe, Huang;Joe, In-Whee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.146-148
    • /
    • 2014
  • In LTE-Advanced (LTE-A) networks, Relay nodes (RN) are used to improve the system coverage. However, it also brings new kind of interference to users which reduces the system performance. In this paper, we use an optimization relay node deployment to reduce the interference as much as possible and resource allocation to improve the user throughput. Our simulation results show our method is able to improve the user SINR and throughput.

Development of PC-based Simulation System for Metal Forming (PC기반 소성가공공정 성형해석 시스템 개발)

  • 곽대영;천재승;김수영;이근안;임용택
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.233-241
    • /
    • 2000
  • It is well known that the quality and efficiency of the design of metal forming processes can be significantly improved with the aid of effective numerical simulations. In the present study, a two-and three-dimensional finite element simulation system, CAMP form, was developed for the analysis of metal forming processes in the PC environment. It is composed of a solver based on the thermo-rigid-viscoplastic approach and graphic user interface (GUI) based pre-and post-processors to be used for the effective description of forming conditions and graphic display of simulation results, respectively. In particular, in the case of CAMPform 2D (two-dimensional), as the solver contains an automatic remeshing module which determines the deformation step when remeshing is required and reconstructs the new mesh system, it is possible to carry out simulations automatically without any user intervention. Also, the forming analysis considers ductile fracture of the workpiece and wear of dies for better usage of the system. In the case of CAMPform 3D, general three-dimensional problems that involve complex die geometries and require remeshing can be analyzed, but full automation of simulations has yet to be achieved. In this paper, the overall structure and computational background of CAMPform will be briefly explained and analysis results of several forming processes will be shown. From the current results, it is construed that CAMPform can be used in providing useful information to assist the design of forming processes.

  • PDF

A method for discrete event simulation and building information modelling integration using a game engine

  • Sandoval, Carlos A. Osorio;Tizani, Walid;Koch, Christian
    • Advances in Computational Design
    • /
    • v.3 no.4
    • /
    • pp.405-418
    • /
    • 2018
  • Building Information Modelling (BIM) and Discrete Event Simulation (DES) are tools widely used in the context of the construction industry. While BIM is used to represent the physical and functional characteristics of a facility, DES models are used to represent its construction process. Integrating both is beneficial to those interested in the field of construction management since it has many potential applications. Game engines provide a human navigable 3D virtual environment in which the integrated BIM and DES models can be visualised and interacted with. This paper reports the experience obtained while developing a simulator prototype which integrates a BIM and a DES model of a single construction activity within a commercial game engine. The simulator prototype allows the user to visualise how the duration of the construction activity is affected by different input parameters interactively. It provides an environment to conduct DES studies using the user's own BIM models. This approach could increase the use of DES technologies in the context of construction management and engineering outside the research community. The presented work is the first step towards the development of a serious game for construction management education and was carried out to determine the suitable IT tools for its development.

Real-time Simulation Technique for Visual-Haptic Interaction between SPH-based Fluid Media and Soluble Solids (SPH 기반의 유체 및 용해성 강체에 대한 시각-촉각 융합 상호작용 시뮬레이션)

  • Kim, Seokyeol;Park, Jinah
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2017
  • Interaction between fluid and a rigid object is frequently observed in everyday life. However, it is difficult to simulate their interaction as the medium and the object have different representations. One of the challenging issues arises especially in handling deformation of the object visually as well as rendering haptic feedback. In this paper, we propose a real-time simulation technique for multimodal interaction between particle-based fluids and soluble solids. We have developed the dissolution behavior model of solids, which is discretized based on the idea of smoothed particle hydrodynamics, and the changes in physical properties accompanying dissolution is immediately reflected to the object. The user is allowed to intervene in the simulation environment anytime by manipulating the solid object, where both visual and haptic feedback are delivered to the user on the fly. For immersive visualization, we also adopt the screen space fluid rendering technique which can balance realism and performance.

Evaluation of staircase accidents using 3D virtual simulation based on behavioral characteristics of the elderly (가상공간 시뮬레이션을 활용한 고령자 행동특성 기반 계단 낙상사고 평가)

  • Yang, Hyun-Cheul;Na, Sun-Cheol;Kim, Dong-Hyun;Lee, Jae-Wook
    • Journal of KIBIM
    • /
    • v.7 no.4
    • /
    • pp.21-30
    • /
    • 2017
  • Due to the rapidly aging population, the death rate of elderly people by safety accidents has been increasing. In particular, precautions are needed for falls prevention because they either directly or indirectly cause death. In the case of elderly people, most of the fall accidents occur in dense residential areas, and particularly, the staircase poses a risk of falling. Therefore, a safety assessment should be performed from the design phase. However, in general, staircases are designed using existing stair data or only aims to satisfy the installation criteria. Laws and regulations only define minimum requirements for safety, so it is not possible to prevent fall accidents even if they satisfy the requirements. Therefore, this study proposes a simulation-based method for evaluating the safety of staircases. The behavioral characteristics of the elderly are implemented to an virtual user in a virtual space including staircases, and fall accidents are evaluated by the evaluation logic related to the behavioral characteristics. The result shows that the safety of staircases can be preevaluated and reflected on the design to reduce the possibility of fall accidents of the elderly.

VLBI NETWORK SIMULATOR: AN INTEGRATED SIMULATION TOOL FOR RADIO ASTRONOMERS

  • Zhao, Zhen;An, Tao;Lao, Baoqiang
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.5
    • /
    • pp.207-216
    • /
    • 2019
  • In this paper we introduce a software package, the Very long baseline interferometry Network SIMulator (VNSIM), which provides an integrated platform assisting radio astronomers to design Very Long Baseline Interferometry (VLBI) experiments and evaluate the network performance, with a user-friendly interface. Though VNSIM is primarily motivated by the East Asia VLBI Network, it can also be used for other VLBI networks and generic interferometers. The software package not only integrates the functionality of plotting (u, v) coverage, scheduling the observation, and displaying the dirty and CLEAN images, but also adds new features including sensitivity calculations for a given VLBI network. VNSIM provides flexible interactions on both command line and graphical user interface and offers friendly support for log reports and database management. Multi-processing acceleration is also supported, enabling users to handle large survey data. To facilitate future developments and updates, all simulation functions are encapsulated in separate Python modules, allowing independent invoking and testing. In order to verify the performance of VNSIM, we performed simulations and compared the results with other simulation tools, showing good agreement.

The impact of fuel depletion scheme within SCALE code on the criticality of spent fuel pool with RBMK fuel assemblies

  • Andrius Slavickas;Tadas Kaliatka;Raimondas Pabarcius;Sigitas Rimkevicius
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4731-4742
    • /
    • 2022
  • RBMK fuel assemblies differ from other LWR FA due to a specific arrangement of the fuel rods, the low enrichment, and the used burnable absorber - erbium. Therefore, there is a challenge to adapt modeling tools, developed for other LWR types, to solve RBMK problems. A set of 10 different depletion simulation schemes were tested to estimate the impact on reactivity and spent fuel composition of possible SCALE code options for the neutron transport modelling and the use of different nuclear data libraries. The simulations were performed using cross-section libraries based on both, VII.0 and VII.1, versions of ENDF/B nuclear data, and assuming continuous energy and multigroup simulation modes, standard and user-defined Dancoff factor values, and employing deterministic and Monte Carlo methods. The criticality analysis with burn-up credit was performed for the SFP loaded with RBMK-1500 FA. Spent fuel compositions were taken from each of 10 performed depletion simulations. The criticality of SFP is found to be overestimated by up to 0.08% in simulation cases using user-defined Dancoff factors comparing the results obtained using the continuous energy library (VII.1 version of ENDF/B nuclear data). It was shown that such discrepancy is determined by the higher U-235 and Pu-239 isotopes concentrations calculated.

생산제어시스템의 시뮬레이션모델 자동생성

  • 이상훈;조현보;정무영
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.631-634
    • /
    • 1996
  • This paper describes an intelligent user interface to define simulation models from the process and resource models. It also explains an automatic program generator of discrete event simulation model for shop floor control in a flexible manufacturing system. Especially, the paper is focused on the design and development of methodology to automate simulation modeling from the system description. Describing a shop floor control system in simulation is not an easy task since it must resolve various decision problems such as deadlock resolution, part dispatching, resource conflict resolution, etc. The program generator should be capable of constructing a complete discrete simulation models for a multi-product and multi-stage flow shop containing the above mentioned problems.

  • PDF