• 제목/요약/키워드: User Review Analysis

검색결과 452건 처리시간 0.02초

User Review Mining: An Approach for Software Requirements Evolution

  • Lee, Jee Young
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.124-131
    • /
    • 2020
  • As users of internet-based software applications increase, functional and non-functional problems for software applications are quickly exposed to user reviews. These user reviews are an important source of information for software improvement. User review mining has become an important topic of intelligent software engineering. This study proposes a user review mining method for software improvement. User review data collected by crawling on the app review page is analyzed to check user satisfaction. It analyzes the sentiment of positive and negative that users feel with a machine learning method. And it analyzes user requirement issues through topic analysis based on structural topic modeling. The user review mining process proposed in this study conducted a case study with the a non-face-to-face video conferencing app. Software improvement through user review mining contributes to the user lock-in effect and extending the life cycle of the software. The results of this study will contribute to providing insight on improvement not only for developers, but also for service operators and marketing.

Cost-Benefit based User Review Selection Method

  • Neung-Hoe Kim;Man-Soo Hwang
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.177-181
    • /
    • 2023
  • User reviews posted in the application market show high relevance with the satisfaction of application users and its significance has been proven from numerous studies. User reviews are also crucial data as they are essential for improving applications after its release. However, as infinite amounts of user reviews are posted per day, application developers are unable to examine every user review and address them. Simply addressing the reviews in a chronological order will not be enough for an adequate user satisfaction given the limited resources of the developers. As such, the following research suggests a systematical method of analyzing user reviews with a cost-benefit analysis, in which the benefit of each user review is quantified based on the number of positive/negative words and the cost of each user review is quantified by using function point, a technique that measures software size.

Use Case Elicitation Method Using "When" Sentences from User Reviews

  • Kim, Neung-Hoe;Hong, Chan-Ki
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.198-202
    • /
    • 2020
  • User review sites are spaces where users can freely post and share their opinions, which are trusted by many people and directly influence sales. In addition, they overcome the limitations arising from existing requirements collection and are able to gather the needs of large numbers of different people at a low cost. Therefore, such sites are attracting attention as new spaces for understanding user needs. In a previous study, a user review analysis was attempted using 5W and 1H, and we inferred that a sentence containing "when" has special information based on the user experience. In addition, the requirements of the derivative activities in a user review can identify more user needs than the general requirements of derivative activities. In this paper, we propose a systematic method of deriving "when" sentences contain meaningful information from user reviews and converting them into use cases, which is one of the requirements of a specification method. This method converts unstructured data into structured data such that it can be included as the user requirements during software development from user comments expressed in natural language. This method will reduce project failures and increase the likelihood of success by enabling an efficient collection and analysis of user needs from valuable user reviews.

금융 모바일 앱 리뷰 데이터의 UX 분석을 위한 시스템 개발 및 검증 (Development of a System for UX Analysis of Financial Mobile App Review Data and Its Verification)

  • 현지예;손영민;박재완
    • 문화기술의 융합
    • /
    • 제9권1호
    • /
    • pp.755-761
    • /
    • 2023
  • 디지털 전환이 가속화되면서 금융 서비스 또한 비대면 서비스의 비중이 높아지고 있다. 최근 모바일 서비스에서 경쟁력을 확보하기 위해 사용자 경험이 대두되고, 사용자 경험을 향상하기 위한 분석 기법이 출현하고 있다. 정량적 평가에 사용되는 데이터 중 하나인 사용자 리뷰 데이터는 불필요한 정보가 다량 포함되어 있어 개선 방향을 도출해내는 데 많은 시간과 에너지가 소요된다. 따라서 본 연구에서는 코사인 유사도 알고리듬을 활용해 사용자 경험 계층을 기준으로 UX 분석 시스템을 개발하고 검증을 위해 국민은행, 우리은행, 카카오뱅크, 토스의 사용자 리뷰 데이터를 분석하는 것을 목표로 한다. 본 연구는 개발된 UX 분석 시스템이 사용자 리뷰 데이터의 분석을 통해 효과적으로 UX 분석이 가능한 시스템이라는 것을 증명하였다. 본 연구의 시스템은 빠르게 고객의 피드백을 반영해야 하는 애자일 조직에서 사용자 경험 계층별 개선 방안을 파악하는 데 용이하게 사용될 수 있을 것으로 기대된다.

텍스트 마이닝을 이용한 부동산 서비스 앱 리뷰 분석 (Real Estate Service App Review Analysis Using Text Mining)

  • 강성안;김동연;류민호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권4호
    • /
    • pp.227-245
    • /
    • 2021
  • Purpose The purpose of this study is to examine the variables affecting user satisfaction through previous studies and to examine the differences between apps. Differences are based on factors that determine the quality of real estate service apps and derived by the topic modeling results. Design/methodology/approach This study conducts topic modeling to find factors affecting user satisfaction of real estate service apps using user reviews. Sentiment analysis is additionally conduct on the derived topics to examine the user responses. Findings Users give high sentiment scores for services that can manage factors such as usefulness of information, false sales, and hype. In addition, managing the basic services of app is an important factor influencing user satisfaction.

텍스트 마이닝을 활용한 웹툰 애플리케이션 사용자 리뷰 분석 (Analysis of User Reviews for Webtoon Applications Using Text Mining)

  • 신효림;최준호
    • 문화기술의 융합
    • /
    • 제8권4호
    • /
    • pp.457-468
    • /
    • 2022
  • 웹툰 산업이 급속도로 성장하며, 이러한 성장세와 함께 새로운 웹툰 애플리케이션 모델이 제시되었다. 웹툰 애플리케이션 1.0과 2.0을 지나 3.0의 시대가 시작된 것이다. 이러한 변화에도 불구하고 아직까지 웹툰 애플리케이션을 대상으로 한 사용자 리뷰 분석 연구는 부족한 실정이다. 이에 이 연구는 웹툰 애플리케이션 3.0 모델을 제시한 '카카오웹툰(다음웹툰)'을 대상으로 사용자 리뷰를 분석하고자 한다. 분석을 위해 애플리케이션 리뷰 20,382개를 수집한 후 전처리 과정을 버전 별로 TF-IDF, 네트워크 분석, 토픽 모델링, 감성 분석을 실시하였다. 이를 통해 웹툰 애플리케이션 변화에 따른 사용자 경험을 탐구하고 리뷰를 통한 사용성 평가를 진행하였다.

Conveyed Message in YouTube Product Review Videos: The discrepancy between sponsored and non-sponsored product review videos

  • 김도훈;서지혜
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제32권4호
    • /
    • pp.29-50
    • /
    • 2023
  • Purpose The impact of online reviews is widely acknowledged, with extensive research focused on text-based reviews. However, there's a lack of research regarding reviews in video format. To address this gap, this study aims to explore the connection between company-sponsored product review videos and the extent of directive speech within them. This article analyzed viewer sentiments expressed in video comments based on the level of directive speech used by the presenter. Design/methodology/approach This study involved analyzing speech acts in review videos based on sponsorship and examining consumer reactions through sentiment analysis of comments. We used Speech Act theory to perform the analysis. Findings YouTubers who receive company sponsorship for review videos tend to employ more directive speech. Furthermore, this increased use of directive speech is associated with a higher occurrence of negative consumer comments. This study's outcomes are valuable for the realm of user-generated content and natural language processing, offering practical insights for YouTube marketing strategies.

텍스트 마이닝 기법을 활용한 메타버스 플랫폼 고객 리뷰 분석 (Metaverse Platform Customer Review Analysis Using Text Mining Techniques )

  • 김혜진;이정승;김수경
    • Journal of Information Technology Applications and Management
    • /
    • 제31권1호
    • /
    • pp.113-122
    • /
    • 2024
  • This comprehensive study delves into the analysis of user review data across various metaverse platforms, employing advanced text mining techniques such as TF-IDF and Word2Vec to gain insights into user perceptions. The primary objective is to uncover the factors that contribute to user satisfaction and dissatisfaction, thereby providing a nuanced understanding of user experiences in the metaverse. Through TF-IDF analysis, the research identifies key words and phrases frequently mentioned in user reviews, highlighting aspects that resonate positively with users, such as the ability to engage in creative activities and social interactions within these virtual environments. Word2Vec analysis further enriches this understanding by revealing the contextual relationships between words, offering a deeper insight into user sentiments and the specific features that enhance their engagement with the platforms. A significant finding of this study is the identification of common grievances among users, particularly related to the processes of refunds and login, which point to broader issues within payment systems and user interface designs across platforms. These insights are critical for developers and operators of metaverse platforms, suggesting a focused approach towards enhancing user experiences by amplifying positive aspects. The research underscores the importance of continuous improvement in user interface design and the transparency of payment systems to foster a loyal user base. By providing a comprehensive analysis of user reviews, this study offers valuable guidance for the strategic development and optimization of metaverse platforms, ensuring they remain responsive to user needs and continue to evolve as vibrant, engaging virtual environments.

빅데이터 분석을 활용한 사용자 경험 평가 방법론 탐색 : 아마존 에코에 대한 온라인 리뷰 분석을 중심으로 (Exploration of User Experience Research Method with Big Data Analysis : Focusing on the Online Review Analysis of Echo)

  • 황해정;심혜린;최준호
    • 한국콘텐츠학회논문지
    • /
    • 제16권8호
    • /
    • pp.517-528
    • /
    • 2016
  • 이 연구는 이미 실생활에서 사용되고 있으나 이에 대한 실증적 사용자 경험 조사가 부족한 사물인터넷 기반 제품에 대한 새로운 사용자 경험 방법론을 탐색해보고자 진행되었다. 지금까지의 사용자 경험에 대한 연구가 주로 설문이나 관찰 방법 등을 통해 이루어져 온 것과 달리 본 연구에서는 사물인터넷 기반 제품 중 지능형 에이전트인 아마존 에코(Echo)를 대상으로 사용자들의 온라인 리뷰를 분석하는 빅데이터 분석 기법을 활용하여 사용자 경험을 살펴보았다. 토픽 모델링 분석 결과, 에코의 기능, 음성 인터랙션, 지속적인 기능 개선과 관련된 사용 경험 요인들이 도출되었다. 또한 회귀분석결과 지속적인 기능 개선이 만족도에 가장 큰 영향을 미치는 것으로 나타났다. 연구의 의의는 사용자 경험을 제고할 수 있는 지능형 사물인터넷 제품 연구방법으로서 빅데이터 분석방법론 활용 가능성을 제시한 점이다.

Research and Design of Functional Requirements of Shared Electric Bicycle App Based on User Experience

  • Xiangqin Zhao;Bin Wang
    • Journal of Information Processing Systems
    • /
    • 제19권2호
    • /
    • pp.219-231
    • /
    • 2023
  • Intelligent applications are crucial for increasing the popularity of shared urban electric bicycles (EBs). Building an application platform architectural system that can satisfy independent user operations is critical for increasing the intelligent usage of shared EBs. Consequently, we collected online reviews of shared EB applications, conducted semantic processing and sentiment analysis, and refined the positive and negative review data for each function. The positive and negative review indices of each function were calculated using the formulae for positive and negative review indices of product functions, thereby determining the functions that need to be improved. Each function of the Shared EB application was improved according to its business process. The main contributions of this study are to build a user requirement architecture system for the Shared EB application with five dimensions and 22 functions using the Delphi method to design the user interface (UI) of this application based on user satisfaction evaluation results; to create a high-fidelity dynamic interaction prototype and compare user satisfaction before and after improving the Shared EB application functions. The testing results indicate that the changes in the UI significantly improve the user experience satisfaction of the urban Shared EB application, with the positive experience index increasing by 69.21% and the negative experience index decreasing by 75.85% overall. This information can be directly used by relevant companies to improve the functions of the Shared EB application.