• 제목/요약/키워드: User Interface View

검색결과 214건 처리시간 0.022초

멀티미디어 저작도구를 이용한 발달장애 진단.평가 시스템 구현연구 (Developmental disability Diagnosis Assessment Systems Implementation using Multimedia Authorizing Tool)

  • 변상해;이재현
    • 벤처창업연구
    • /
    • 제3권1호
    • /
    • pp.57-72
    • /
    • 2008
  • 본 논문에서는 그동안 부분적으로 진행된 발달장애 진단 평가에 관련된 전산처리를 멀티미디어 기법을 응용하여 발달장애 진단 평가분야에 새로운 방법을 제시한다. 발달장애 진단 평가를 위한 멀티미디어 정보는 여러 가지 속성을 지니고 있기 때문에 모든 발달장애 진단 평가 정보에 대한 기술을 사람이 수행해야 할 때는 엄청난 작업량이 수반될 뿐 아니라 동일한 데이터에 대한 기술이 주관에 따라 달라질 수도 있다는 것을 알게 되였다. 특히 발달장애 시스템 구현은 현재의 컴퓨팅 환경에서의 동영상 데이터 처리에 대한 비중의 증가, 텍스트 위주의 데이터에서 시각적인 동영상으로의 데이터 활용의 전이 등 발달장애 데이터가 멀티미디어 환경에 적합한 데이터로의 전이가 필수적이며 사용자 역시 빠른 이해를 위해 시각적 데이터를 선호하기 때문에 본 논문에서는 GUI(Graphics User Interface) 기법을 도입하여 검사 중에 텍스트 명령어는 거의 사용하지 않고도 발달장애 진단 평가를 수행할 수 있게 했다. 특히 발달장애 진단 평가에서 필요한 각종 데이터는 그 속성이 영상, 이미지, 논리연산의 필요성 및 각종 연산이 요구된다. 그래서 본 논문에서는 문제점을 해결하기 위해 편집대상 데이터(Content)에 의해 관련 정보를 검색하는 내용 기반(Content-based)의 검색 기술에 대한 연구를 적용했다.

  • PDF

개인정보유출 확신도 도출을 위한 전문가시스템개발 (Rule-base Expert System for Privacy Violation Certainty Estimation)

  • 김진형;이알렉산더;김형종;황준
    • 정보보호학회논문지
    • /
    • 제19권4호
    • /
    • pp.125-135
    • /
    • 2009
  • 개인정보 유출을 위한 공격자의 시도는 다양한 보안 시스템에 로그를 남기게 된다. 이러한 로그정보들은 개인정보 유출에 관여했다고 보고된 특정 IP 주소에 대한 확신도를 도출하기위한 요소가 될 수 있다. 본 논문에서는 보편적으로 활용 가능한 보안 시스템들의 로그정보들을 기반으로 확신도를 도출하기 위한 규칙기반 전문가 시스템의 섣계 및 구현을 다루고 있다. 일반적으로 개인정보유출과 연관된 다양한 로그정보들은 개인정보 관리자에 의해서 분석되어, 의심 대상이 되는 IP 주소에 대해 정보유출에 관여한 정도를 도출하게 된다. 이러한 개인정보 관리자가 수행하는 분석절차는 전문가의 축적된 지식 (Know-how)이라고 할 수 있으며, 이는 규칙 형태로 정의되어 분석절차의 자동화에 활용될 수 있다. 특히, 개인정보유출과 관련된 로그정보의 분석 범위는 다양한 해킹시도를 탐지 해내야하는 침입탐지 및 대응 분야와 비교할 때 상대적으로 넓지 않다. 따라서 도출해내야 하는 규칙의 개수가 상대적으로 많지 않다고 할 수 있다. 본 논문에서는 특히 IDS. Firewall 및 Webserver 의 로그정보들을 개인정보유출의 관점에서 상호 연관성을 도출하였고, 이러한 연관성을 기반으로 규칙을 정의하고 이들을 생성/변경/삭제 할 수 있는 시스템을 개발하였다. 본 연구의 결과에 해당하는 규칙기반 지식베이스 및 전문가 시스템은 개인정보유출에 관여 했다고 여겨지는 특정 IP 주소에 대한 낮은 수준(Low-level)의 검증을 수행하여 확신도를 도출하는데 활용이 가능하다.

텍스트 데이터 시각화를 위한 MVC 프레임워크 (A MVC Framework for Visualizing Text Data)

  • 최광선;정교성;김수동
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.39-58
    • /
    • 2014
  • 빅데이터의 중요성에 대한 인식이 확산되고, 관련한 기술이 발전됨에 따라, 최근에는 빅데이터의 처리와 분석의 결과를 어떻게 시각화할 것인지가 매우 관심 받는 주제로 부각되고 있다. 이는 분석된 결과를 보다 명확하고 효과적으로 전달하는 데에 있어서 데이터의 시각화가 매우 효과적인 방법이기 때문이다. 시각화는 분석 시스템과 사용자가 소통하기 위한 하나의 그래픽 사용자 인터페이스(GUI)를 담당하는 역할을 한다. 통상적으로 이러한 GUI 부분은 데이터의 처리나 분석의 결과와 독립될 수록 시스템의 개발과 유지보수가 용이하며, MVC(Model-View-Controller)와 같은 디자인 패턴의 적용을 통해 GUI와 데이터 처리 및 관리 부분 간의 결합도를 최소화하는 것이 중요하다. 한편 빅데이터는 크게 정형 데이터와 비정형 데이터로 구분할 수 있는데 정형 데이터는 시각화가 상대적으로 용이한 반면, 비정형 데이터는 시각화를 구현하기가 복잡하고 다양하다. 그럼에도 불구하고 비정형 데이터에 대한 분석과 활용이 점점 더 확산됨에 따라, 기존의 전통적인 정형 데이터를 위한 시각화 도구들의 한계를 벗어나기 위해 각각의 시스템들의 목적에 따라 고유의 방식으로 시각화 시스템이 구축되는 현실에 직면해 있다. 더욱이나 현재 비정형 데이터 분석의 대상 중 대부분을 차지하고 있는 텍스트 데이터의 경우 언어 분석, 텍스트 마이닝, 소셜 네트워크 분석 등 적용 기술이 매우 다양하여 하나의 시스템에 적용된 시각화 기술을 다른 시스템에 적용하는 것이 용이하지 않다. 이는 현재의 텍스트 분석 결과에 대한 정보 모델이 서로 다른 시스템에 적용될 수 있도록 설계되지 못하는 경우가 많기 때문이다. 본 연구에서는 이러한 문제를 해결하기 위하여 다양한 텍스트 데이터 분석 사례와 시각화 사례들의 공통적 구성 요소들을 식별하여 표준화된 정보 모델인 텍스트 데이터 시각화 모델을 제시하고, 이를 통해 시각화의 GUI 부분과 연결할 수 있는 시스템 모델로서의 시각화 프레임워크인 TexVizu를 제안하고자 한다.

딥러닝 프레임워크의 비교: 티아노, 텐서플로, CNTK를 중심으로 (Comparison of Deep Learning Frameworks: About Theano, Tensorflow, and Cognitive Toolkit)

  • 정여진;안성만;양지헌;이재준
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.1-17
    • /
    • 2017
  • 딥러닝 프레임워크의 대표적인 기능으로는 '자동미분'과 'GPU의 활용' 등을 들 수 있다. 본 논문은 파이썬의 라이브러리 형태로 사용 가능한 프레임워크 중에서 구글의 텐서플로와 마이크로소프트의 CNTK, 그리고 텐서플로의 원조라고 할 수 있는 티아노를 비교하였다. 본문에서는 자동미분의 개념과 GPU의 활용형태를 간단히 설명하고, 그 다음에 logistic regression을 실행하는 예를 통하여 각 프레임워크의 문법을 알아본 뒤에, 마지막으로 대표적인 딥러닝 응용인 CNN의 예제를 실행시켜보고 코딩의 편의성과 실행속도 등을 확인해 보았다. 그 결과, 편의성의 관점에서 보면 티아노가 가장 코딩 하기가 어렵고, CNTK와 텐서플로는 많은 부분이 비슷하게 추상화 되어 있어서 코딩이 비슷하지만 가중치와 편향을 직접 정의하느냐의 여부에서 차이를 보였다. 그리고 각 프레임워크의 실행속도에 대한 평가는 '큰 차이는 없다'는 것이다. 텐서플로는 티아노에 비하여 속도가 느리다는 평가가 있어왔는데, 본 연구의 실험에 의하면, 비록 CNN 모형에 국한되었지만, 텐서플로가 아주 조금이지만 빠른 것으로 나타났다. CNTK의 경우에도, 비록 실험환경이 달랐지만, 실험환경의 차이에 의한 속도의 차이의 편차범위 이내에 있는 것으로 판단이 되었다. 본 연구에서는 세 종류의 딥러닝 프레임워크만을 살펴보았는데, 위키피디아에 따르면 딥러닝 프레임워크의 종류는 12가지가 있으며, 각 프레임워크의 특징을 15가지 속성으로 구분하여 차이를 특정하고 있다. 그 많은 속성 중에서 사용자의 입장에서 볼 때 중요한 속성은 어떤 언어(파이썬, C++, Java, 등)로 사용가능한지, 어떤 딥러닝 모형에 대한 라이브러리가 잘 구현되어 있는지 등일 것이다. 그리고 사용자가 대규모의 딥러닝 모형을 구축한다면, 다중 GPU 혹은 다중 서버를 지원하는지의 여부도 중요할 것이다. 또한 딥러닝 모형을 처음 학습하는 경우에는 사용설명서가 많은지 예제 프로그램이 많은지 여부도 중요한 기준이 될 것이다.