• Title/Summary/Keyword: User Input

Search Result 1,620, Processing Time 0.031 seconds

Construction of a Knowledge Based Hybrid Simulation Environment

  • Kim, Myoung-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 1992
  • A knowledge based hybrid simulation environment has been established which supports the simulation procedure from the modeling step to the experimentation step by providing various tools, query, and advisory. The knowledge base in the established environment uses the If-Then Rule to transfer the fact input from the user to the act for the execution of the simulation process. Simulation non-experts are the user target and non-specific area is the application target.

  • PDF

Development of Rigidity and Frequency Analysis Program for Corrugated Plates (주름판의 강성 및 진동수 해석 프로그램 개발)

  • Kim, Young-Wann;Chung, Kang;Park, Kyung-Jo
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.24-32
    • /
    • 2002
  • A program is developed to analyze and design the frequency and rigidity of the corrugated plates with various corrugation shapes (the considered corrugation shapes are triangular and trapezoidal) and 36 kinds of boundary conditions using smeared theory. The system is consisted of input, solution and output routines, and its routine is made up pull-down menu type and run in Window basis using Visual Basic Language. The input routine helps the design engineers to make the input data user-friendly. The solution routine uses the homemade solver. In the output routine, automatic designs can be done using AutoCAD and Intent Tool package by interfacing the input data.

  • PDF

A Study on the Construction of a Document Input/Output system (문서 입출력 시스템의 구성에 관한 연구)

  • 함영국;도상윤;정홍규;김우성;박래홍;이창범;김상중
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.10
    • /
    • pp.100-112
    • /
    • 1992
  • In this paper, an integrated document input/output system is developed which constructs the graphic document from a text file, converts the document into encoded facsimile data, and also recognizes printed/handwritten alphanumerics and Korean characters in a facsimile or graphic document. For an output system, we develop the method which generates bit-map patterns from the document consisting of the KSC5601 and ASCII codes. The binary graphic image, if necessary, is encoded by the G3 coding scheme for facsimile transmission. For a user friendly input system for documents consisting of alphanumerics and Korean characters obtained from a facsimile or scanner, we propose a document recognition algirithm utilizing several special features(partial projection, cross point, and distance features) and the membership function of the fuzzy set theory. In summary, we develop an integrated document input/output system and its performance is demonstrated via computer simulation.

  • PDF

Gesture Input as an Out-of-band Channel

  • Chagnaadorj, Oyuntungalag;Tanaka, Jiro
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.92-102
    • /
    • 2014
  • In recent years, there has been growing interest in secure pairing, which refers to the establishment of a secure communication channel between two mobile devices. There are a number of descriptions of the various types of out-of-band (OOB) channels, through which authentication data can be transferred under a user's control and involvement. However, none have become widely used due to their lack of adaptability to the variety of mobile devices. In this paper, we introduce a new OOB channel, which uses accelerometer-based gesture input. The gesture-based OOB channel is suitable for all kinds of mobile devices, including input/output constraint devices, as the accelerometer is small and incurs only a small computational overhead. We implemented and evaluated the channel using an Apple iPhone handset. The results demonstrate that the channel is viable with completion times and error rates that are comparable with other OOB channels.

Interaction using Speech and a Virtual Stick in a CAVE

  • Fujishiro, Kanzan;Takahashi, Hiroki;Nakajima, Masayuki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.207-212
    • /
    • 1999
  • In VEs (virtual environments) such as a CAVE system, there are three important operations : executive command decision, object selection and 3-D (three-dimensional) pointing. It is necessary to implement these operations in VEs intuitively and accessibly. In CAVE, it is possible for examines to walk and change their viewpoints freely. Then, the input devices which have excellent portability and rich expression are desired. Speech input satisfies both requirements. It is, however, very difficult for the speech input to indicate an exact point in 3-D space. Therefore, an extendable virtual stick is employed and it supports speech input. This paper proposes a user friendly interface using speech and a virtual stick in CAVE system. In this paper, several applications appropriate for the proposed interface are developed. Some problems are pointed out from the applications.

Pickprimer: A Graphic User Interface Program for Primer Design on the Gene Target Region (픽프라이머 : 유전자 목표 구간 탐색 모듈을 포함한 프라이머 제작 그래픽 프로그램)

  • Chung, Hee;Mun, Jeong-Hwan;Lee, Seung-Chan;Yu, Hee-Ju
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.461-466
    • /
    • 2011
  • In genetic and molecular breeding studies of plants, researchers need to design various kinds of primers based on their research purposes. So far many kinds of web- or script-based non-commercial programs for primer design are available. Because most of them do not include user interface for multipurpose usage including gene structure prediction and direct target selection on sequences, it has been a laborious work to design primers targeting on the exon or intron regions of interesting genes. Here we report a primer designing graphic user interface program, Pickprimer, that includes gene structure prediction and primer design modules by combining source codes of the Spidey and Primer3 programs. This program provides simple graphic user interface to input sequences and design primers. Genomic sequence and mRNA or coding sequence of genes can be copy and pasted or input as fasta or text files. Based on alignment of the input sequences using the Spidey module, a putative gene structure is graphically visualized along with exon-intron sequences of color codes. Primer design can be easily performed by dragging mouse on the displayed sequences or input primer targeting position with desirable values of primers. The output of designed primers with detailed information is provided by the Primer3 module. PCR evaluation of 24 selected primer sets successfully amplified single amplicons from six Brassica rapa cultivars. The Pickprimer will be a convenient tool for genetic and molecular breeding studies of plants.

A Study on User-Centric Force-Touch Measurement using Force-Touch Cover (포스 터치 커버를 이용한 사용자 중심적 포스 터치 측정에 관한 연구)

  • Nam, ChoonSung;Suh, Min-soo;Shin, DongRyeol
    • Journal of Internet Computing and Services
    • /
    • v.18 no.3
    • /
    • pp.37-48
    • /
    • 2017
  • Touch interface has been introduced as one of the most common input devices that are widely used in the Smart Device. Recently Force-Touch interface, a new approach of input method, having the power recognition mechanism, has been appeared in Smart industries. Force-Touching determining multiple things (the geographical and pressure values of touching point) in one touching act allows users to provide more than one input methods in a limited environments. Force-Touching Device is required different user communicational interaction than other common Smart devices because it is possible to recognize various inputs in the one act. It means that Force-Touching is only able to understand and to use the pressure sensitive values, not other Smart input methods. So, we built Force-Touch-Cover that makes typical Smart-Device to have Force-Touching interfaces. We analysis the accuracy of the Force-Touching-Cover's sensor and also assessment the changes in pressure values depending on the pressure position. Via this Paper, We propose the implement of user-oriented Force-Touching interface that is based on users' feedback as our conclusion.

A Study on Machine Learning-Based Real-Time Gesture Classification Using EMG Data (EMG 데이터를 이용한 머신러닝 기반 실시간 제스처 분류 연구)

  • Ha-Je Park;Hee-Young Yang;So-Jin Choi;Dae-Yeon Kim;Choon-Sung Nam
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.57-67
    • /
    • 2024
  • This paper explores the potential of electromyography (EMG) as a means of gesture recognition for user input in gesture-based interaction. EMG utilizes small electrodes within muscles to detect and interpret user movements, presenting a viable input method. To classify user gestures based on EMG data, machine learning techniques are employed, necessitating the preprocessing of raw EMG data to extract relevant features. EMG characteristics can be expressed through formulas such as Integrated EMG (IEMG), Mean Absolute Value (MAV), Simple Square Integral (SSI), Variance (VAR), and Root Mean Square (RMS). Additionally, determining the suitable time for gesture classification is crucial, considering the perceptual, cognitive, and response times required for user input. To address this, segment sizes ranging from a minimum of 100ms to a maximum of 1,000ms are varied, and feature extraction is performed to identify the optimal segment size for gesture classification. Notably, data learning employs overlapped segmentation to reduce the interval between data points, thereby increasing the quantity of training data. Using this approach, the paper employs four machine learning models (KNN, SVC, RF, XGBoost) to train and evaluate the system, achieving accuracy rates exceeding 96% for all models in real-time gesture input scenarios with a maximum segment size of 200ms.

Using Spatial Ontology in the Semantic Integration of Multimodal Object Manipulation in Virtual Reality

  • Irawati, Sylvia;Calderon, Daniela;Ko, Hee-Dong
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.884-892
    • /
    • 2006
  • This paper describes a framework for multimodal object manipulation in virtual environments. The gist of the proposed framework is the semantic integration of multimodal input using spatial ontology and user context to integrate the interpretation results from the inputs into a single one. The spatial ontology, describing the spatial relationships between objects, is used together with the current user context to solve ambiguities coming from the user's commands. These commands are used to reposition the objects in the virtual environments. We discuss how the spatial ontology is defined and used to assist the user to perform object placements in the virtual environment as it will be in the real world.

  • PDF

Semi-automatic Field Morphing : Polygon-based Vertex Selection and Adaptive Control Line Mapping

  • Kwak, No-Yoon
    • International Journal of Contents
    • /
    • v.3 no.4
    • /
    • pp.15-21
    • /
    • 2007
  • Image morphing deals with the metamorphosis of one image into another. The field morphing depends on the manual work for most of the process, where a user has to designate the control lines. It takes time and requires skills to have fine quality results. It is an object of this paper to propose a method capable of realizing the semi-automation of field morphing using adaptive vertex correspondence based on image segmentation. The adaptive vertex correspondence process efficiently generates a pair of control lines by adaptively selecting reference partial contours based on the number of vertices that are included in the partial contour of the source morphing object and in the partial contour of the destination morphing object, in the pair of the partial contour designated by external control points through user input. The proposed method generates visually fluid morphs and warps with an easy-to-use interface. According to the proposed method, a user can shorten the time to set control lines and even an unskilled user can obtain natural morphing results as he or she designates a small number of external control points.