• Title/Summary/Keyword: Used Foundry Sands

Search Result 12, Processing Time 0.024 seconds

Using Waste Foundry Sands as Reactive Media in Permeable Reactive Barriers

  • 이태윤;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.62-65
    • /
    • 2002
  • Permeable reactive barriers (PRBs) are in-situ barriers constructed in a subsurface to treat contaminated groundwater using various reactive media. The common reactive medium used in PRB is zero-valent iron, which has been widely used to treat chlorinated solvents (i.e., PCE, TCE). A disadvantage of iron media is high cost. In this study, waste foundry sands were tested to determine the feasibility of their use as a low cost reactive medium. Batch and column tests were conducted with TCE to determine transport parameters and reactivity of the foundry sands. The reactivities of foundry sands for common groundwater contaminants are comparable to or slightly higher than those for Peerless iron, a common medium used in PRBs. In addition, the TOC and clay in foundry sands can significantly retard the movement of target contaminant, which may result in lower effluent concentration of contaminant due to biodegradation. In general, PRBs 1-m thick can be constructed with many foundry sands to treat TCE provided the zero-valent iron content in the foundry sand is higher than 1%.

  • PDF

Study on the reuse and recycling of the used foundry sands (폐주물사의 재활용 활성화 방안에 관한 연구)

  • Kim, Young-Jun;Chung, Myung-Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.38-44
    • /
    • 2010
  • Foundry sands are made up of silica and some coking agents, such as bentonite or resin, and used as templates for the production of various casting products. Foundry sands, which are repeatedly used, were finally transformed into the waste materials by heat, losing their proper functions. The used foundry sands have been treated as general wastes according to the contents of coking agents used. Silica, however, can be recycled through the proper treatment due to its physical property not to changed by heat. In this study, we have identified and investigated at the occurrence, treatment and recycling status of the used foundry sands, as well as for the regime and inhibitory factors of the recycling of them in domestic and foreign cases.

Mechanism of TCE Removal with Foundry Sands and Design of Permeable ]Reactive Barriers (주물사의 TCE 제거 메커니즘과 반응벽체에의 적용가능성)

  • ;Benson, Craig H
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.143-157
    • /
    • 2002
  • Batch and column tests were conducted with common groundwater contaminants (i.e., trichloroethylene) to determine transport parameters and reactivity of the foundry sands. The reactivities of foundry sands for common groundwater contaminants are comparable to or slightly higher than those for Peerless iron a common medium used in permeable reactive barriers. In addition, the TOC and clay in foundry sands can significantly retard the movement of target contaminants, which may result in lower effluent concentrations of contaminants due to biodegradation. In general, permeable reactive barriers with the thickness of 1m can be constructed with many foundry sands to treat typical groundwater comtaminants provided the zero-valent iron content in the foundry sand is higher than 1%.

Leaching Characteristics of Foundry Sands When Used as Reactive Media in Permeable Reactive Barriers (반응벽체에 쓰인 주물사의 용출특성에 관한 연구)

  • ;Benson, Craig H
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.179-193
    • /
    • 2002
  • Waste foundry sands were tested to determine their leaching characteristics when used as reactive media in permeable reactive barriers (PRBs). Water leach tests and column leach tests were performed on twelve foundry sands and three reference materials such as Peerless iron, a local fill material, and torpedo sand. The latter three materials were tested to compare concentrations of heavy metals and anions found in other materials commonly placed below the groundwater table with those from the foundry sands. Results of water leach tests md total elemental analyses showed that all of the laundry sands are Category 2 materials per Section NR 538 of the Wisconsin Administrator Code. However, tests on Peerless iron, torpedo sand, and a typical fill material indicate that these materials, which are commonly placed below the groundwater table, also are Category 2 materials. Thus, using foundry sand as a PR3 medium should pose no greater risk than that imposed using conventional construction materials.

Study on the Application of Domestic Artificial Sands for the Self-hardening Molding Process by Using Furan Resin (후란자경성(自硬性) 주형용(鑄型用) 국산인조규사(國産人造硅砂)의 활용(活用)에 관(關)한 연구(硏究))

  • Choi, Chang-Ock;Lee, Sang-Yun
    • Journal of Korea Foundry Society
    • /
    • v.1 no.3
    • /
    • pp.19-29
    • /
    • 1981
  • An emphasis has been placed on the importance of selecting a sand for furan sand process, which ie affected by the properties of sand. Investigations have been carried out to use the domestic artificial sands for the furan sand process. For laboratory investigations, the sands have been prepared and tested for chemical analysis, loss on ignition, sieve analysis, AFS grain fineness number, grain shape, PH value, acid demand, surface shape, theoretical surface area, moisture absorption, crushing durability and compressive strength and S. S. I. of molding sands. Most commercial sands have been found to be able to be used. The main requirement of the sands has been shown to be that 3 or 4 screen sands, AFS no.40-70 (or 100), of low acid demand, good surface area and good grain shape require less resin and catalyst to give an adequate strength.

  • PDF

Effect of Hammer Material on Crushing of Silica (함마의 재질이 규석의 분쇄에 미치는 영향)

  • Lee, Jae-Jang;Chang, Sang-Geun;Chang, Kwang-Teak;Park, Jong-Ryok
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.119-125
    • /
    • 2002
  • In Kwangjin industrial company, mill is operating for the foundry sand production at the rate of 25t/hr from quartzite. Foundry sands fall into four distinct categories: silica sand, lake sand, bank sand, and natural molding sand. Silica sand is a general term used to describe crushed, washed, graded, dried, and cooled clay-free sands. This study was conducted for the investigation of the foundry sand productivity and the life span of the hammer according to the material quality. The life time of hammer from several manufacturer were compared in order to find out the grinding efficiency of the various hammer material. In the result of tests, the life time of high-Mn hammer was 10.5 hours while that of high-Cr was 19.5 hours. The life time in case of typical worn shape hammers was about 12 hours and the average time of a blowhole hammer was about 6.5 hours.

  • PDF

A Study on the Optimum Amount of Waste Foundry Sand and Flyash in Concrete (폐주물사와 플라이애쉬의 적정 사용량에 관한 연구)

  • Yang, Joo-Kyoung;Moon, Young-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.1
    • /
    • pp.43-47
    • /
    • 2009
  • The most of waste foundry sands(WFS) have been discarded. It is very urgent for our country to make a study on recycling of WFS. The one of recycling method of WFS is using them as fine aggregate for concrete. This study provided the optimum amount of WFS and flyash when WFS and flyash were used together in concrete. The concrete made with 60% WFS fine aggregate replacement showed higher compressive strength, splitting tensile strength and modulus of elasticity than normal concrete. In the case that the flyash and WFS are replaced together, the compressive strength and splitting tensile strength were improved at flyash replacement ratio $10%{\sim}20%$ and WFS replacement ratio $40%{\sim}60%$. The increase of WFS and flyash replacement led lower air content. While the increase of WFS replacement led lower slump, the increase of flyash replacement led higher slump.

Selection of Artificial Sand Suitable for Manufacturing Steel Castings through Evaluation of Various Foundry Sand Properties (각종 주물사의 특성과 주강품 주조에 적합한 인공사 선택)

  • Gwang-Sik Kim;Jae-Hyung Kim;Myeong-Jun Kim;Ji-Tae Kim;Ki-Myoung Kwon;Sung-Gyu Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.3
    • /
    • pp.107-136
    • /
    • 2023
  • Natural silica sand was commonly used for sand casting of cast steel products, and chromites sand was used to suppress seizure defects due to the lack of thermal properties of silica sand. However there are disadvantages such as deterioration by repeated use, system sand mixing problem, difficulty separating and removing, increased during mold according to high density and to being waste containing chrome. Recently, industrial waste reduction and atmospheric environment improvement have been highlighted as important tasks in the casting industry. In order to solve the problems that occur when using foundry Sand and to improve the environment of casting factories, various artificial sands that can be applied instead of natural silica sand have been developed and introduced. Artificial sands can be classified into artificial sand manufactured by the electric arc atomization or gas flame atomization, artificial sand manufactured by the spray drying & sintering process, artificial sand manufactured by the sintering & crushing process and exhibit different physical properties depending on the type of raw-minerals and manufacturing method. In this study, comparative evaluation tests were conducted on the physical properties of various foundry sands, mold strength, physical durability, thermal durability, and casting test pieces. When comprehensively considering the actual amount of molding sand used according to density, the mold strength according to the shape of sand, the physical and thermal durability of foundry sand, and the heat resistance characteristics of foundry sand, 'Molten artificial sand A1' or 'Molten artificial sand B' is judged to be the most suitable spherical artificial sand for casting of heavy steel castings.

Engineering Properties of Flowable Fills with Various Waste Materials

  • Lee, Kwan-Ho;Lee, Byung-Sik;Cho, Kyung-Rae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • Flowable fill is generally a mixture of sand, fly ash, a small amount of cement and water. Sand is the major component of most flowable fill with waste materials. Various materials, including two waste foundry sands(WFS), an anti-corrosive waste foundry sand and natural soil, were used as a fine aggregate in this study. Natural sea sand was used for comparison. The flow behavior, hardening characteristics, and ultimate strength behavior of flowable fill were investigated. The unconfined compression test necessary to sustain walkability as the fresh flowable fill hardens was determined and the strength at 28-days appeared to correlate well with the water-to-cement ratio. The strength parameters, like cohesion and internal friction angle, were determined for the samples prepared by different curing times. The creep test for settlement potential was conducted. The data presented show that by-product foundry sand, an anti-corrosive WFS, and natural soil can be successfully used in controlled low strength materials(CLSM), and it provides similar or better properties to that of CLSM containing natural sea sand.

Effect of L.D Converter Slag Hardener on the Collapsibility of Sand Molds Using Sodium Silicate Binder (규산소오다계 자경성주형의 붕괴성에 미치는 L.D 전로 슬래그 경화제의 영향)

  • Choi, Jun-Oh;Park, Sung-Taik;Han, Yun-Sung;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.235-243
    • /
    • 2003
  • The collapsibility of sodium silicate-bonded sands mixed with the L.D converter slag powder to form a hardener were investigated. Five to six percent sodium silicate on the basis of silica sand and 30-40% L.D converter slag powder on the basis of sodium silicate, were mixed and the compressive strength, surface stability index(SSI), bench time, retained strength of the standard sand specimens were measured. The properties were similar to those of general inorganic bonded self-setting molds. The compressive strength and surface stability index were increased and the retained strength and bench time were decreased with increased amount of the L.D converter slag powder. The retained strength of sodium silicate-bonded self-setting molds with the L.D converter slag powder were decreased than $CO_2$ sand molds. The collapsibility of sodium silicate-bonded self-setting molds with the L.D converter slag powder were superior in comparison with $CO_2$ sand molds. The L.D converter slag powder could be used as hardener and collapse agent for the sodium silicate-bonded self-setting molds.