• 제목/요약/키워드: Urine concentration and dilution

검색결과 9건 처리시간 0.019초

수분 대사 장애 질환의 병태 생리와 치료 (Pathophysiology and management of disorders in water metabolism)

  • 김동언
    • Clinical and Experimental Pediatrics
    • /
    • 제50권5호
    • /
    • pp.430-435
    • /
    • 2007
  • Even though we drink and excrete water without recognition, the amount and the composition of body fluid remain constant everyday. Maintenance of a normal osmolality is under the control of water balance which is regulated by vasopressin despite sodium concentration is the dominant determinant of plasma osmolality. The increased plasma osmolality (hypernatremia) can be normalized by the concentration of urine, which is the other way of gaining free water than drinking water, while the low plasma osmolality (hyponatremia) can be normalized by the dilution of urine which is the only regulated way of free water excretion. On the other hand, volume status depends on the control of sodium balance which is regulated mainly by renin-angiotensin-aldosterone system, through which volume depletion can be restored by enhancing sodium retention and concomitant water reabsorption. This review focuses on the urine concentration and dilution mechanism mediated by vasopressin and the associated disorders; diabetes insipidus and syndrome of inappropriate antidiuretic hormone secretion.

소변농축과 장력 스트레스에 대한 콩팥 수질 세포들의 적응 (Urine Concentration and the Adaptation of Renal Medullary Cells to Hypertonicity)

  • 김동언
    • Childhood Kidney Diseases
    • /
    • 제11권2호
    • /
    • pp.145-151
    • /
    • 2007
  • Hypertonicity (hypernatremia) of extracellular fluid causes water movement out of cells, while hypotonicity(hyponatremia) causes water movement into cells, resulting in cellular shrinkage or cellular swelling, respectively. In most part of the body, the osmolality of extracellular fluid is maintained within narrow range($285-295 mOsm/kgH_2O$) and some deviations from this range are not problematic in most tissue of the body except brain. On the other hand, the osmolality in the human renal medulla fluctuates between 50 and $1,200 mOsm/kgH_2O$ in the process of urine dilution and concentration. The adaptation of renal medullary cells to the wide fluctuations in extracellular tonicity is crucial for the cell survival. This review will summarize the mechanisms of urine concentration and the adaptation of renal medullary cells to the hyper tonicity, which is mediated by TonEBP transcription factor and its target gene products(UT-A1 urea transporter etc.).

  • PDF

Quantitative Speciation of Selenium in Human Blood Serum and Urine with AE- RP- and AF-HPLC-ICP/MS

  • Jeong, Ji-Sun;Lee, Jonghae;Pak, Yong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3817-3824
    • /
    • 2013
  • Various separation modes in HPLC, such as anion exchange (AE), reversed-phase (RP), and affinity (AF) chromatography were examined for the separation of selenium species in human blood serum and urine. While RP- and AE-HPLC were mainly used for the separation of small molecular selenium species, double column AF-HPLC achieved the separation of selenoproteins in blood serum efficiently. Further, the effluent of AF-HPLC was enzymatically hydrolyzed and then analyzed with RP HPLC for selenoamino acid study. The versatility of the hybrid technique makes the in-depth study of selenium species possible. For quantification, post column isotope dilution (ID) with $^{78}Se$ spike was performed. ORC ICP/MS (octapole reaction cell inductively coupled plasma/mass spectrometry) was used with 4 mL $min^{-1}$ Hydrogen as reaction gas. In urine sample, inorganic selenium and SeCys were identified. In blood serum, selenoproteins GPx, SelP and SeAlb were detected and quantified. The concentration for GPx, SelP and SeAlb was $22.8{\pm}3.4\;ng\;g^{-1}$, $45.2{\pm}1.7\;ng\;g^{-1}$, and $16.1{\pm}2.2\;ng\;g^{-1}$, respectively when $^{80}Se/^{78}Se$ was used. The sum of these selenoproteins ($84.1{\pm}4.4\;ng\;g^{-1}$) agrees well with the total selenium concentration measured with the ID method of $87.0{\pm}3.0\;ng\;g^{-1}$. Enzymatic hydrolysis of each selenium proteins revealed that SeCys is the major amino acid for all three proteins and SeMet is contained in SeAlb only.

요중 카드뮴과 비소의 보정방법 비교 : 요중 크레아티닌과 요비중 (A Comparison of the Adjustment Methods for Assessing Urinary Concentrations of Cadmium and Arsenic: Creatinine vs. Specific Gravity)

  • 김동경;송지원;박정덕;최병선
    • 한국환경보건학회지
    • /
    • 제37권6호
    • /
    • pp.450-459
    • /
    • 2011
  • Objectives: Biomarkers in urine are important in assessing exposures to environmental or occupational chemicals and for evaluateing renal function by exposure from these chemicals. Spot urine samples are needed to adjust the concentration of these biomarkers for variations in urine dilution. This study was conducted to evaluate the suitability of adjusting the urinary concentration of cadmium (uCd) and arsenic (uAs) by specific gravity (SG) and urine creatinine (uCr). Methods: We measured the concentrations of blood cadmium (bCd), uCd, uAs, uCr, SG and N-acetyl-${\beta}$-D-glucosaminidase (NAG) activity, which is a sensitive marker of tubular damage by low dose Cd exposure, in spot urine samples collected from 536 individuals. The value of uCd, uAs and NAG were adjusted by SG and uCr. Results: The uCr levels were affected by gender (p < 0.01) and muscle mass (p < 0.01), while SG levels were affected by gender (p < 0.05). Unadjusted uCd and uAs were correlated with SG (uCd: r = 0.365, p < 0.01; uAs: r = 0.488, p < 0.01), uCr (uCd: r = 0.399, p < 0.01; uAs: r = 0.484, p < 0.01). uCd and uAs adjusted by SG were still correlated with SG (uCd: r = 0.360, p < 0.01, uAs: r = 0.483, p < 0.01). uCd and uAs adjusted by uCr and modified uCr ($M_{Cr}$) led to a significant negative correlation with uCr (uCd: r = -0.367, p < 0.01; uAs: r = -0.319, p < 0.01) and $M_{Cr}$ (uCd: r = -0.292, p < 0.01; uAs: r = -0.206, p < 0.01). However, uCd and uAs adjusted by conventional SG ($C_{SG}$) were disappeared from these urinary dilution effects (uCd: r = -0.081; uAs: r = 0.077). Conclusions: $C_{SG}$ adjustment appears to be more appropriate for variations in cadmium and arsenic in spot urine.

레이저 유발형광법을 이용한 우라늄 작업자의 뇨 형광 분석 (An Improved Laser-Induced Fluorimetry for Assay of Uranium in Urine)

  • Lee, Sang-Mok;Shin, Jang-Soo;Kim, Cheol-Jung
    • Nuclear Engineering and Technology
    • /
    • 제25권2호
    • /
    • pp.255-258
    • /
    • 1993
  • 펄스형 질소레이저를 사용한 time-resolved laser-induced fluorimetry를 이용하여 우라늄 작업자의 뇨속에 함유되어 있는 우라늄의 농도를 간단한 전처리만으로 정량분석하는 방법을 연구하였다. 형광분석할 때에 뇨에 함유된 chloride ion은 우라늄 형광을 심하게 quenching하는 것으로 알려져 있으며, 따라서 이를 제거하기 위한 전처리 과정에서 많은 시간 소모와 큰 실험 오차를 유발하고 있다. 본 방법에서는 10% Fluran 수용액을 뇨에 첨가하여 뇨함량이 약 1% 정도가 되었을 때 뇨속의 chloride에 의한 quenching 영향을 최소한으로 줄일 수 있었으며, 시간 0에서의 형광강도를 계산하여 형광강도의 농도에 대한 직선성을 측정한 결과 우라늄 농도 범위 10-500 ppb에서 우수한 직선성을 나타내었다.

  • PDF

LC-MS/MS를 이용한 소변 중 크레아티닌 분석의 측정불확도 평가 (Uncertainty evaluation for the determination of creatinine in urine by LC-MS/MS)

  • 김진영;권운용;서승일;인문교
    • 분석과학
    • /
    • 제25권1호
    • /
    • pp.83-90
    • /
    • 2012
  • 소변 중 크레아티닌의 정상적인 농도범위는 30 - 300 mg/dL로 마약류 감정에 앞서 크레아티닌농도를 측정함으로써 소변 시료의 유효성을 확인하고 있다. 크레아티닌 농도 측정을 위해 액체크로마토그래피-질량분량분석법(LC-MS/MS, liquid chromatography-tandem mass spectrometry)을 사용하였다. 우선 소변 시료를 고속으로 원심분리한 후 10 ${\mu}L$를 분취하여 증류수 390 ${\mu}L$와 혼합하여 희석하였다. 희석된 시료 20 ${\mu}L$에 내부표준물질(5 ${\mu}g/mL$) 30 ${\mu}L$와 acetonitrile 10 ${\mu}L$를 첨가하여 혼합한 후 여과한 시료를 LC-MS/MS에 주입하였다. 크레아티닌은 multi-mode ODS column (Scherzo SM-C18, 75 ${\times}$ 2.0 mm, I.D. 3 ${\mu}m$)을 이용하여 분리하였고, 이동상은 0.2% formic acid와 acetonitrile로 구성되었으며 유속은 150 ${\mu}L$/min으로 하였다. 크레아티닌과 내부표준물질은 [M+H]$^+$ precursor ion과 특징적인 product ion을 한 쌍으로 m/z 114.0${\rightarrow}$ 86.0과 m/z 117.0${\rightarrow}$ 89.1에서 모니터링하여 정량에 적합한 크로마토그램을 얻을 수 있었다. 측정불확도 평가에 앞서 정량분석시 측정값에 영향을 주는 인자들을 찾아내고 각각의 요소들이 측정결과에 어떤 영향을 주는가를 살펴보았다. 시료 희석, 검정 곡선, 재현성, 표준물질의 인자 순으로 측정불확도에 영향을 미치고 있음을 확인하였다. 실제 사람의 소변에서 크레아티닌 농도를 측정한 결과, 측정값에 대한 오차 범위의 상대불확도는 14.2%로 산출되었다.

동위원소 희석 HPLC/MS에 의한 혈청 내 urea의 정량 (Quantification of urea in serum by isotope dilution HPLC/MS)

  • 이화심;박상열
    • 분석과학
    • /
    • 제18권4호
    • /
    • pp.271-277
    • /
    • 2005
  • 혈액 내 urea는 임상진단 시 신장 기능을 판단하는 중요한 표지물질로서 측정되고 있다. 단백질 등 질소화합물의 최종 대사물인 urea는 콩팥의 사구체에서 걸러져 소변으로 배출되는데, 사구체의 거르는 능력이 저하되면 결국 혈액 속의 urea 농도가 증가하게 되어 신장 기능의 정상여부를 판단할 수 있게 된다. 이러한 임상진단 결과의 신뢰성 향상을 위해서는 측정결과가 일차분석법으로 인증된 인증표준 물질과 소급성 고리를 유지해야 한다. 본 연구에서는 혈청 내 urea의 일차분석법으로서 $15^N_2$-urea를 내부 표준물질로 사용하는 동위원소희석 액체크로마토그라피-질량분석법 (ID-HPLC/MS)을 개발하였다. 이 방법은 측정원리상 고도의 정확성이 확보될 뿐 아니라 별도의 유도체화가 필요 없기 때문에 빠르고 편리하다. $C_{18}$-분리관에 0.1 mmol/L $NH_4Cl$ buffer를 이동상으로 사용하여 urea를 분리하였는데, 이 완충용액은 비교적 분자량이 작은 urea를 질량분석하는데 방해가 크지 않은 장점이 있다. HPLC와 질량분석기의 인터페이스로서 positive mode의 electrospray ionization (ESI)를 사용하여 높은 감도와 재현성을 성취하였다. 국제적으로 인정된 인증표준물질의 분석을 통해 최적화된 방법의 유효성을 확인하였으며, 국제비교시험에도 참여하여 좋은 결과를 얻었다. ISO guide에 따라 불확도를 계산하였으며, 확장 불확도는 95% 신뢰도에서 약 1.8%로 나타났다. 이 분석법은 표준연에서 개발 중인 혈청인증표준물질을 인증하는 일차기준측정절차로도 사용되고 있다.

Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep

  • Panthee, Arvinda;Matsuno, Ayana;Al-Mamun, Mohammad;Sano, Hiroaki
    • Journal of Animal Science and Technology
    • /
    • 제59권6호
    • /
    • pp.14.1-14.9
    • /
    • 2017
  • Background: Garlic and its constituents are reported to have been effective in reducing methane emission and also influence glucose metabolism in body; however, studies in ruminants using garlic leaves are scarce. Garlic leaves contain similar compounds as garlic bulbs, but are discarded in field after garlic bulb harvest. We speculate that feeding garlic leaves might show similar effect as garlic constituents in sheep and could be potential animal feed supplement. Thus, we examined the effect of freeze dried garlic leaves (FDGL) on rumen fermentation, methane emission, plasma glucose kinetics and nitrogen utilization in sheep. Methods: Six sheep were fed Control diet (mixed hay and concentrate (60:40)) or FDGL diet (Control diet supplemented with FDGL at 2.5 g/kg $BW^{0.75}$ of sheep) using a crossover design. Methane gas emission was measured using open-circuit respiratory chamber. Plasma glucose turnover rate was measured using isotope dilution technique of [$U-^{13}C$]glucose. Rumen fluid, feces and urine were collected to measure rumen fermentation characteristics and nitrogen utilization. Result: No significant difference in rumen fermentation parameters was noticed except for rumen ammonia tended to be higher (0.05 < P < 0.1) in FDGL diet. Methane emission per kg dry matter ingested and methane emission per kg dry matter digested were lower (P < 0.05) in FDGL diet. Plasma glucose concentration was similar between diets and plasma glucose turnover rate tended to be higher in FDGL diet (0.05 < P < 0.1). Nitrogen retention was higher (P < 0.05) and microbial nitrogen supply tended to be higher (0.05 < P < 0.1) in FDGL diet. Conclusion: FDGL diet did not impair rumen fermentation, improved nitrogen retention; while absence of significant results in reduction of methane emission, glucose turnover rate and microbial nitrogen supply, further studies at higher dose would be necessary to conclude the merit of FDGL as supplement in ruminant feedstuff.

마약남용자 11명의 타액 중 메스암페타민의 분석 (Analysis of Methamphetamine and Amphetamine in Oral Fluid of Eleven Drug Abusers)

  • 김은미;이주선;최혜영;최화경;정희선
    • 약학회지
    • /
    • 제52권6호
    • /
    • pp.419-425
    • /
    • 2008
  • A qualitative and quantitative analytical method was developed for detection of methamphetamine (MA) and its main metabolite amphetamine (AM) in oral fluid. Oral fluids of eleven drug abusers were provided by Police, specimens were collected by stimulation with a cotton swab treated with 20 mg of citric acid ($Salivette^{(R)}$; Sarstedt, USA). As the preliminary test, oral fluid samples were screened for amphetamines by Fluorescence Polarization Immunoassay (TDxFLx, Abbott Co.). Extraction for MA was performed using solid-phase extraction (SPE) by $RapidTrace^{TM}$ (Zymark, USA) with mixed mode cation exchange cartridge, CLEAN $SCREEN^{(R)}$ (130 mg/3 ml, UCT) after dilution with phosphate buffer. Samples were evaporated and derivatized by pentafluoropropionic acid anhydride (PFPA). Quantitation of MA and AM was performed by gas chromatography-mass spectrometry (GC-MS) using selective ion monitoring (SIM), the quantitation ions were m/z 204 (MA), 208 (MA-$D_5$), 190 (AM) and 194 (AM-$D_5$). The selectivity, linearity of calibration, limit of detection (LOD) and quantification (LOQ) within- and between day precision, accuracy and recoveries were examined as parts of the method validation. All oral fluid samples gave positive results to immunoassay for MA (cut-off level, 50 ng/ml as d-amphetamine). Concentrations of MA and AM by GC-MS in eleven samples were ranged 104.2${\sim}$4603.3 ng/ml and 32.4${\sim}$268.6 ng/ml, respectively. Extracted calibration curves of MA and AM were linear over the two concentration range of 1${\sim}$100 and 50${\sim}$1000 ng/ml with correlation coefficient of above 0.999. LOQ of MA and AM was 1 and 3 ng/ml, respectively. The intraand inter-day run precisions (CV) for MA and AM were less than 10%, and the accuracies (bias) for MA and AM were also less than 10% at the two different concentrations 5 and 100 ng/ml at low calibration range, 50 and 1000 ng/ml at high calibration range. The absolute recoveries of MA and AM at low and high calibration ranges were more than 82% and 75%, respectively. In this study the qualitative and quantitative analytical method of MA in oral fluid was established. Oral fluid testing may detect drug use in past hours because of its shorter detection window than urine, and be useful in post-accident situations. So oral fluids will be most useful for testing drug abuse in the driving under the influence of drug (DUID) as the alternative specimens of urine.