Browse > Article
http://dx.doi.org/10.5806/AST.2012.25.1.083

Uncertainty evaluation for the determination of creatinine in urine by LC-MS/MS  

Kim, Jin-Young (Drug Analysis Laboratory, Supreme Prosecutors' Office)
Kwon, Woon-Yong (Drug Analysis Laboratory, Supreme Prosecutors' Office)
Suh, Sung-Ill (Drug Analysis Laboratory, Supreme Prosecutors' Office)
In, Moon-Kyo (Drug Analysis Laboratory, Supreme Prosecutors' Office)
Publication Information
Analytical Science and Technology / v.25, no.1, 2012 , pp. 83-90 More about this Journal
Abstract
The objective of the study was to estimate the measurement uncertainty associated with determination of creatinine (Cr) in urine samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Centrifuged urine samples (10 ${\mu}L$) were diluted with 390 ${\mu}L$ of distilled water. To 20 ${\mu}L$ aliquots of diluted urine samples, 30 ${\mu}L$ of internal standard solution (Cr-$d_3$, 5 ${\mu}g/mL$) and 10 ${\mu}L$ of acetonitrile were added and filtered. The samples (1 ${\mu}L$) were introduced into LC-MS/MS with no further pretreatment. Cr was separated on a multi-mode ODS column (Scherzo SM-C18, 75 ${\times}$ 2.0 mm I.D., 3 ${\mu}m$) and quantified by LC-MS/MS operating in MRM mode (Cr, m/z 114.0${\rightarrow}$ 86.0; Cr-$d_3$, m/z 117.0${\rightarrow}$ 89.1). The four factors that contribute uncertainty to the final result were extracted and evaluated. The principal factors of contribution to combined standard uncertainty were sample dilution, calibration curve and repeatability, while the preparation of standard solution was only a minor factor. Relative extended uncertainty of the measured concentration was 14.2% in a real urine sample.
Keywords
Measurement uncertainty; urine analysis; creatinine; LC-MS/MS;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J.-H. Lee and R.-M. Ahn, J. Env. Hlth. Sci., 36, 215-221 (2010).
2 M. L. Smith, A. J. Barnes and M. A. Heustis, J. Anal. Toxicol., 33, 185-189 (2009).   DOI   ScienceOn
3 U.S. Department of Health and Human Services, Fed. Regist., 69, 19644-19673 (2004).
4 World Health Organization (WHO), 'Biological Monitoring of Chemical Exposure in the Workplace: guidelines', Vol. 1, Geneva, 1996.
5 Y. Zuo, Y. Yang, Z. Zhu, W. He and Z. Aydin, Talanta, 83, 1707-1710 (2011).   DOI   ScienceOn
6 T. Seki, K. Yamaji, Y. Orita, S. Moriguchi and A. Shinoda, J. Chromatogr. A, 730, 139-145 (1996).   DOI   ScienceOn
7 X. B. Chen, A. G. Calder, P. Prasitkusol, D. J. Kyle and M. C. Jayasuriya, J. Mass Spectrom., 33, 130-137 (1998).   DOI   ScienceOn
8 D. Tsikas, A. Wolf, A. Mitschke, F. M. Gutzki, W. Will and M. Bader, J. Chromatogr. B, 878, 2582-2592 (2010).   DOI   ScienceOn
9 R. Husková, P. Chrastina, T. Adam and P. Schneiderka, Clin. Chim. Acta., 350, 99-106 (2004).   DOI   ScienceOn
10 N. Takahashi, G. Boysen, F. Li, Y. Li and J. A. Swenberg, Kidney Int., 71, 266-271 (2007).   DOI   ScienceOn
11 E. K. Park, T. Watanabe, S. J. Gee, M. B. Schenker and B. D. Hammock, J. Agric. Food Chem., 56, 333-336 (2008).   DOI   ScienceOn
12 Korea Research Institute of Standards and Science (KRISS), 'Guide to the Expression of Uncertainty in Measurement', 1998.
13 Korea Laboratory Accreditation Scheme (KOLAS), 'Guide to the Expression of Uncertainty in Measurement (KOLAS-G-002)', 2007.
14 International Organization for Standardization (ISO), 'Guide to the Expression of Uncertainty in Measurement', ISO, Geneva, Switzerland, 1993.
15 EURACHEM/CITAC, 'Quantifying Uncertainty in Analytical Measurement', 2nd Ed., EURACHEM/CITAC Guide CG 4, 2000.
16 J. To-Figueras, M. Sala, R. Otero, C. Barrot, M. Santiag- Siva, M. Rodamilans, C. Herrero, J. Grimalt and J. Sunyer, Environ. Health Persp., 105, 78-83 (1997).   DOI   ScienceOn
17 D. Vearrier, J. A. Curtis and M. I. Greenberg, EXS, 100, 489-517 (2010).
18 D. B. Barr, L. C. Wilder, S. P. Caudill, A. J. Gonzalez, L. L. Needham and J. L. Pirkle, Environ. Health Persp., 113, 192-200 (2005).   DOI