• Title/Summary/Keyword: Urine concentration and dilution

Search Result 9, Processing Time 0.024 seconds

Pathophysiology and management of disorders in water metabolism (수분 대사 장애 질환의 병태 생리와 치료)

  • Kim, Dong Un
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.5
    • /
    • pp.430-435
    • /
    • 2007
  • Even though we drink and excrete water without recognition, the amount and the composition of body fluid remain constant everyday. Maintenance of a normal osmolality is under the control of water balance which is regulated by vasopressin despite sodium concentration is the dominant determinant of plasma osmolality. The increased plasma osmolality (hypernatremia) can be normalized by the concentration of urine, which is the other way of gaining free water than drinking water, while the low plasma osmolality (hyponatremia) can be normalized by the dilution of urine which is the only regulated way of free water excretion. On the other hand, volume status depends on the control of sodium balance which is regulated mainly by renin-angiotensin-aldosterone system, through which volume depletion can be restored by enhancing sodium retention and concomitant water reabsorption. This review focuses on the urine concentration and dilution mechanism mediated by vasopressin and the associated disorders; diabetes insipidus and syndrome of inappropriate antidiuretic hormone secretion.

Urine Concentration and the Adaptation of Renal Medullary Cells to Hypertonicity (소변농축과 장력 스트레스에 대한 콩팥 수질 세포들의 적응)

  • Kim, Dong-Un
    • Childhood Kidney Diseases
    • /
    • v.11 no.2
    • /
    • pp.145-151
    • /
    • 2007
  • Hypertonicity (hypernatremia) of extracellular fluid causes water movement out of cells, while hypotonicity(hyponatremia) causes water movement into cells, resulting in cellular shrinkage or cellular swelling, respectively. In most part of the body, the osmolality of extracellular fluid is maintained within narrow range($285-295 mOsm/kgH_2O$) and some deviations from this range are not problematic in most tissue of the body except brain. On the other hand, the osmolality in the human renal medulla fluctuates between 50 and $1,200 mOsm/kgH_2O$ in the process of urine dilution and concentration. The adaptation of renal medullary cells to the wide fluctuations in extracellular tonicity is crucial for the cell survival. This review will summarize the mechanisms of urine concentration and the adaptation of renal medullary cells to the hyper tonicity, which is mediated by TonEBP transcription factor and its target gene products(UT-A1 urea transporter etc.).

  • PDF

Quantitative Speciation of Selenium in Human Blood Serum and Urine with AE- RP- and AF-HPLC-ICP/MS

  • Jeong, Ji-Sun;Lee, Jonghae;Pak, Yong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3817-3824
    • /
    • 2013
  • Various separation modes in HPLC, such as anion exchange (AE), reversed-phase (RP), and affinity (AF) chromatography were examined for the separation of selenium species in human blood serum and urine. While RP- and AE-HPLC were mainly used for the separation of small molecular selenium species, double column AF-HPLC achieved the separation of selenoproteins in blood serum efficiently. Further, the effluent of AF-HPLC was enzymatically hydrolyzed and then analyzed with RP HPLC for selenoamino acid study. The versatility of the hybrid technique makes the in-depth study of selenium species possible. For quantification, post column isotope dilution (ID) with $^{78}Se$ spike was performed. ORC ICP/MS (octapole reaction cell inductively coupled plasma/mass spectrometry) was used with 4 mL $min^{-1}$ Hydrogen as reaction gas. In urine sample, inorganic selenium and SeCys were identified. In blood serum, selenoproteins GPx, SelP and SeAlb were detected and quantified. The concentration for GPx, SelP and SeAlb was $22.8{\pm}3.4\;ng\;g^{-1}$, $45.2{\pm}1.7\;ng\;g^{-1}$, and $16.1{\pm}2.2\;ng\;g^{-1}$, respectively when $^{80}Se/^{78}Se$ was used. The sum of these selenoproteins ($84.1{\pm}4.4\;ng\;g^{-1}$) agrees well with the total selenium concentration measured with the ID method of $87.0{\pm}3.0\;ng\;g^{-1}$. Enzymatic hydrolysis of each selenium proteins revealed that SeCys is the major amino acid for all three proteins and SeMet is contained in SeAlb only.

A Comparison of the Adjustment Methods for Assessing Urinary Concentrations of Cadmium and Arsenic: Creatinine vs. Specific Gravity (요중 카드뮴과 비소의 보정방법 비교 : 요중 크레아티닌과 요비중)

  • Kim, Dong-Kyeong;Song, Ji-Won;Park, Jung-Duck;Choi, Byung-Sun
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.6
    • /
    • pp.450-459
    • /
    • 2011
  • Objectives: Biomarkers in urine are important in assessing exposures to environmental or occupational chemicals and for evaluateing renal function by exposure from these chemicals. Spot urine samples are needed to adjust the concentration of these biomarkers for variations in urine dilution. This study was conducted to evaluate the suitability of adjusting the urinary concentration of cadmium (uCd) and arsenic (uAs) by specific gravity (SG) and urine creatinine (uCr). Methods: We measured the concentrations of blood cadmium (bCd), uCd, uAs, uCr, SG and N-acetyl-${\beta}$-D-glucosaminidase (NAG) activity, which is a sensitive marker of tubular damage by low dose Cd exposure, in spot urine samples collected from 536 individuals. The value of uCd, uAs and NAG were adjusted by SG and uCr. Results: The uCr levels were affected by gender (p < 0.01) and muscle mass (p < 0.01), while SG levels were affected by gender (p < 0.05). Unadjusted uCd and uAs were correlated with SG (uCd: r = 0.365, p < 0.01; uAs: r = 0.488, p < 0.01), uCr (uCd: r = 0.399, p < 0.01; uAs: r = 0.484, p < 0.01). uCd and uAs adjusted by SG were still correlated with SG (uCd: r = 0.360, p < 0.01, uAs: r = 0.483, p < 0.01). uCd and uAs adjusted by uCr and modified uCr ($M_{Cr}$) led to a significant negative correlation with uCr (uCd: r = -0.367, p < 0.01; uAs: r = -0.319, p < 0.01) and $M_{Cr}$ (uCd: r = -0.292, p < 0.01; uAs: r = -0.206, p < 0.01). However, uCd and uAs adjusted by conventional SG ($C_{SG}$) were disappeared from these urinary dilution effects (uCd: r = -0.081; uAs: r = 0.077). Conclusions: $C_{SG}$ adjustment appears to be more appropriate for variations in cadmium and arsenic in spot urine.

An Improved Laser-Induced Fluorimetry for Assay of Uranium in Urine (레이저 유발형광법을 이용한 우라늄 작업자의 뇨 형광 분석)

  • Lee, Sang-Mok;Shin, Jang-Soo;Kim, Cheol-Jung
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.255-258
    • /
    • 1993
  • A method for analysis of trace uranium in urine sample was studied using a time-resolved $N_2$-laser-induced fluorimetry. The Fluran solution was found to be efficient to mask the chloride ions which are known to quench uranium fluorescence in the fluorimetric assay of uranium in urine. This improved method made the sample preparation much simpler than other conventional ones. The fluorescence intensities at 1% urine mixture with 10% Fluran aqueous solution showed good linearities in the concentration range of 10-500 ppb(before dilution).

  • PDF

Uncertainty evaluation for the determination of creatinine in urine by LC-MS/MS (LC-MS/MS를 이용한 소변 중 크레아티닌 분석의 측정불확도 평가)

  • Kim, Jin-Young;Kwon, Woon-Yong;Suh, Sung-Ill;In, Moon-Kyo
    • Analytical Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.83-90
    • /
    • 2012
  • The objective of the study was to estimate the measurement uncertainty associated with determination of creatinine (Cr) in urine samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Centrifuged urine samples (10 ${\mu}L$) were diluted with 390 ${\mu}L$ of distilled water. To 20 ${\mu}L$ aliquots of diluted urine samples, 30 ${\mu}L$ of internal standard solution (Cr-$d_3$, 5 ${\mu}g/mL$) and 10 ${\mu}L$ of acetonitrile were added and filtered. The samples (1 ${\mu}L$) were introduced into LC-MS/MS with no further pretreatment. Cr was separated on a multi-mode ODS column (Scherzo SM-C18, 75 ${\times}$ 2.0 mm I.D., 3 ${\mu}m$) and quantified by LC-MS/MS operating in MRM mode (Cr, m/z 114.0${\rightarrow}$ 86.0; Cr-$d_3$, m/z 117.0${\rightarrow}$ 89.1). The four factors that contribute uncertainty to the final result were extracted and evaluated. The principal factors of contribution to combined standard uncertainty were sample dilution, calibration curve and repeatability, while the preparation of standard solution was only a minor factor. Relative extended uncertainty of the measured concentration was 14.2% in a real urine sample.

Quantification of urea in serum by isotope dilution HPLC/MS (동위원소 희석 HPLC/MS에 의한 혈청 내 urea의 정량)

  • Lee, Hwashim;Park, Sangryoul
    • Analytical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.271-277
    • /
    • 2005
  • Urea in blood has been measured as an effective marker for diagnosis of renal function. Urea which is e end-product of nitrogen containing metabolites such as proteins is filtered through glomeruli of kidneys and then excreted as urine. If the renal function is deteriorated, the urea concentration in blood will be increased, from which the healthiness of renal function is judged. In order to improve the confidence of diagnosis results, the results must keep traceability chain to certified reference materials, which was certified by primary reference method. In this study, we proposed isotope dilution-liquid chromatography/mass spectrometry (ID-LC/MS) as a candidate primary method, in which $15^N_2$-urea is used as an internal reference material. The developed method is highly accurate in principle and is convenient as it does not require cumbersome derivatization. 0.1 mmol/L ammonium chloride was selected as a mobile phase for HPLC because it provided low interference in MS analysis of relatively low molecular weighted urea. HPLC and MS were connected with an electrospray ionization (ESI) interface of positive mode, which provided high sensitivity and reproducibility. The developed method was validated with internationally recognized reference materials, and we have obtained satisfactory results in an international ring trial. The expanded uncertainty calculated according to ISO guide was 1.8% at 95% confidence interval. The developed method is being used as a primary reference measurement method such as for certification of serum certified reference materials (CRMs).

Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep

  • Panthee, Arvinda;Matsuno, Ayana;Al-Mamun, Mohammad;Sano, Hiroaki
    • Journal of Animal Science and Technology
    • /
    • v.59 no.6
    • /
    • pp.14.1-14.9
    • /
    • 2017
  • Background: Garlic and its constituents are reported to have been effective in reducing methane emission and also influence glucose metabolism in body; however, studies in ruminants using garlic leaves are scarce. Garlic leaves contain similar compounds as garlic bulbs, but are discarded in field after garlic bulb harvest. We speculate that feeding garlic leaves might show similar effect as garlic constituents in sheep and could be potential animal feed supplement. Thus, we examined the effect of freeze dried garlic leaves (FDGL) on rumen fermentation, methane emission, plasma glucose kinetics and nitrogen utilization in sheep. Methods: Six sheep were fed Control diet (mixed hay and concentrate (60:40)) or FDGL diet (Control diet supplemented with FDGL at 2.5 g/kg $BW^{0.75}$ of sheep) using a crossover design. Methane gas emission was measured using open-circuit respiratory chamber. Plasma glucose turnover rate was measured using isotope dilution technique of [$U-^{13}C$]glucose. Rumen fluid, feces and urine were collected to measure rumen fermentation characteristics and nitrogen utilization. Result: No significant difference in rumen fermentation parameters was noticed except for rumen ammonia tended to be higher (0.05 < P < 0.1) in FDGL diet. Methane emission per kg dry matter ingested and methane emission per kg dry matter digested were lower (P < 0.05) in FDGL diet. Plasma glucose concentration was similar between diets and plasma glucose turnover rate tended to be higher in FDGL diet (0.05 < P < 0.1). Nitrogen retention was higher (P < 0.05) and microbial nitrogen supply tended to be higher (0.05 < P < 0.1) in FDGL diet. Conclusion: FDGL diet did not impair rumen fermentation, improved nitrogen retention; while absence of significant results in reduction of methane emission, glucose turnover rate and microbial nitrogen supply, further studies at higher dose would be necessary to conclude the merit of FDGL as supplement in ruminant feedstuff.

Analysis of Methamphetamine and Amphetamine in Oral Fluid of Eleven Drug Abusers (마약남용자 11명의 타액 중 메스암페타민의 분석)

  • Kim, Eun-Mi;Lee, Ju-Seon;Choi, Hye-Young;Choi, Hwa-Kyung;Chung, Hee-Sun
    • YAKHAK HOEJI
    • /
    • v.52 no.6
    • /
    • pp.419-425
    • /
    • 2008
  • A qualitative and quantitative analytical method was developed for detection of methamphetamine (MA) and its main metabolite amphetamine (AM) in oral fluid. Oral fluids of eleven drug abusers were provided by Police, specimens were collected by stimulation with a cotton swab treated with 20 mg of citric acid ($Salivette^{(R)}$; Sarstedt, USA). As the preliminary test, oral fluid samples were screened for amphetamines by Fluorescence Polarization Immunoassay (TDxFLx, Abbott Co.). Extraction for MA was performed using solid-phase extraction (SPE) by $RapidTrace^{TM}$ (Zymark, USA) with mixed mode cation exchange cartridge, CLEAN $SCREEN^{(R)}$ (130 mg/3 ml, UCT) after dilution with phosphate buffer. Samples were evaporated and derivatized by pentafluoropropionic acid anhydride (PFPA). Quantitation of MA and AM was performed by gas chromatography-mass spectrometry (GC-MS) using selective ion monitoring (SIM), the quantitation ions were m/z 204 (MA), 208 (MA-$D_5$), 190 (AM) and 194 (AM-$D_5$). The selectivity, linearity of calibration, limit of detection (LOD) and quantification (LOQ) within- and between day precision, accuracy and recoveries were examined as parts of the method validation. All oral fluid samples gave positive results to immunoassay for MA (cut-off level, 50 ng/ml as d-amphetamine). Concentrations of MA and AM by GC-MS in eleven samples were ranged 104.2${\sim}$4603.3 ng/ml and 32.4${\sim}$268.6 ng/ml, respectively. Extracted calibration curves of MA and AM were linear over the two concentration range of 1${\sim}$100 and 50${\sim}$1000 ng/ml with correlation coefficient of above 0.999. LOQ of MA and AM was 1 and 3 ng/ml, respectively. The intraand inter-day run precisions (CV) for MA and AM were less than 10%, and the accuracies (bias) for MA and AM were also less than 10% at the two different concentrations 5 and 100 ng/ml at low calibration range, 50 and 1000 ng/ml at high calibration range. The absolute recoveries of MA and AM at low and high calibration ranges were more than 82% and 75%, respectively. In this study the qualitative and quantitative analytical method of MA in oral fluid was established. Oral fluid testing may detect drug use in past hours because of its shorter detection window than urine, and be useful in post-accident situations. So oral fluids will be most useful for testing drug abuse in the driving under the influence of drug (DUID) as the alternative specimens of urine.