• Title/Summary/Keyword: Urea formaldehyde adhesive

Search Result 46, Processing Time 0.018 seconds

The Scavenging Effect of Resorcinol on the Formaldehyde Release from the Urea Formaldehyde Adhesive Bonded Plywood (합판용(合板用) 요소수지접착제(尿素樹脂接着劑)의 리조시놀 첨가(添加)에 따른 유리(遊離)포름알데히드 방산(放散) 제거효과(除去效果))

  • Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.1-5
    • /
    • 1980
  • This study is carried out to determine the scavenging effect of resorcinol added into the urea formaldehyde resin on the formaldehyde release of plywood, as the preliminary study of using the phenolic substances. The method for formaldehyde determination used in this report is the improved chromotropic acid determination. The results are summarized as follows: 1. Resorcinol added into the urea formaldehyde adhesive acts as a good scavenger. 4 percent of resorcinol reduced the formaldehyde release to less than half content. 2. Adding resorcinol gave better glue shear strength than that of control, showing the peak of the shear strength, at 2 percent and decreased to the same strength as control along its content of 4 percent. 3. Moisture content of air dried plywood met the standard very well.

  • PDF

Properties of Urea-Formaldehyde Resin Adhesives with Different Formaldehyde to Urea Mole Ratios

  • Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.67-75
    • /
    • 2007
  • As a part of abating the formaldehyde emission of urea-formaldehyde (UF) resin adhesive by lowering formaldehyde to urea (F/U) mole ratio, this study was conducted to investigate properties of UF resin adhesive with different F/U mole ratios. UF resin adhesives were synthesized at different F/U mole ratios of 1.6, 1.4, 1.2, and 1.0. Properties of UF resin adhesives measured were non-volatile solids content, pH level, viscosity, water tolerance, specific gravity, gel time and free formaldehyde content. In addition, a linear relationship between non-volatile solids content and sucrose concentration measured by a refractometer was established for a faster determination of the non-volatile solids content of UF resin. As F/U mole ratio was lowered, non-volatile solids content, pH, specific gravity, water tolerance, and gel time increased while free formaldehyde content and viscosity were decreased. These results suggested that the amount of free formaldehyde strongly affected the reactivity of UF resin. Lowering F/U mole ratio of UF resin as a way of abating formaldehyde emission consequently requires improving its reactivity.

Effects of Mixing Ratio of Urea and Mlelamine on Formaldehyde Emission and Bonding Properties of Plywoods Manufactured with Urea-Melamine Formaldehyde Adhesives (요소-멜라민 공축합 수지의 요소와 멜라민 혼합비율이 합판의 포름알데히드 방출과 접착성에 미치는 영향)

  • Park, Heon;Kang, Eun-Chang;Min, Kyeong-Heui
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.1
    • /
    • pp.53-59
    • /
    • 2000
  • This study was to measure formaldehyde emission and bonding strength of plywoods manufactured with urea-melamine formaldehyde adhesives, which were made from three different mixing ratios of urea and melamine, and with four different formaldehyde/urea-melamine molar ratios of 1.0,1.1,1.2 and 1.4. The results were as follows 1. Amount of formaldehyde emission was the lowest at the first method of molar ratio(F/(M+U)) 1.0. Amounts of formaldehyde emission of experimental manufactured adhesives were lower than that of commercial adhesive. 2. Bonding strength of dry specimen was the highest at the first method of molar ratio(F/(M+U)) 1.4. Dry bonding strength of molar ratio(F/(M+U)) 1.4 was similar to commercial adhesive. 3. Bonding strength of wet specimen was the highest at the second method of molar ratio(F/(M+U)) 1.4. Bonding strength of wet specimen used by the third method of molar ratio(F/(M+U)) 1.4 was almost equal to commercial adhesive.

  • PDF

13C-NMR Spectroscopy of Urea-Formaldehyde Resin Adhesives with Different Formaldehyde/Urea Mole Ratios

  • Park, Byung-Dae;Lee, Sang M.;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.63-72
    • /
    • 2008
  • As a part of abating formaldehyde emission of urea-formaldehyde (UF) resin adhesive, this study was conducted to investigate chemical structures of UF resin adhesives with different formaldehyde/urea (F/U) mole ratios, using carbon-13 nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. UF resin adhesives were synthesized at four different F/U mole ratios such as 1.6, 1.4, 1.2, and 1.0 for the analysis. The analysis $^{13}C$-NMR spectroscopy showed that UF resin adhesives with higher F/U mole ratios (i.e., 1.6 and 1.4) had two distinctive peaks, indicating the presence of dimethylene ether linkages and methylene glycols, a dissolved form of free formaldehyde. But, these peaks were not detected at the UF resins with lower F/U mole ratios (i.e., 1.2 and 1.0). These chemical structures present at the UF resins with higher F/U mole ratios indicated that UF resin adhesive with higher F/U mole ratio had a greater contribution to the formaldehyde emission than that of lower F/U mole ratio. Uronic species were detected for all UF resins regardless of F/U mole ratios.

Evaluation of the Performance and Formaldehyde Emission Level of Particleboards Bonded with Urea-Formaldehyde Resins (요소수지로 접착된 파티클보드의 포름알데히드 방산량과 성능평가)

  • Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.92-97
    • /
    • 1998
  • Four urea-formaldehyde (UF) resins were synthesized as a particleboard (PB) binder with the four different initial formaldehyde/urea mole ratio and the final mole ratio of 1.15. The UF resins were characterized according to the standard method of resin adhesive analysis. PBs were manufactured using liquid UF resins at 5 minutes press time and 6% resin solids levels on an ovendry particle weight basis. A total of 20 PBs was fabricated for 5 panel replication per UF resin types. The panels were tested for physical strength properties per the procedure ASTM D 1037. The formaldehyde emission levels from the PBs bonded with the UF resins were tested according to 2-hour desiccator test method ASTM D 5582. There were no significant differences among UF resin types for internal bond strength of PBs. But there were significant differences among UF resin types for formaldehyde emission level of PBs. The results showed that the formaldehyde emission level was influenced by the UF resin types without reducing the adhesive performance.

  • PDF

Studies on Bonding Characteristics of Plywood by Kraft Black Liquor and Surface Activators (크라프트펄프 폐액(廢液)과 표면산화제(表面酸化劑)를 이용(利用)한 합판(合板)의 접착특성(接着特性)에 관(關)한 연구(硏究))

  • Chung, In-Ju;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.5-16
    • /
    • 1988
  • This experiment was executed to investigate the effect of activation of veneer surface by oxidizing agents, hydrogen peroxide and nitric acid, on bonding characteristics of Malas(Homalium foetidum Benth) plywood, in which the effects of these oxidizing agents amount, pretreatment time, and pressing time and temperatue on shear strength of the plywood were examined and discussed. In this research the activation of veneer surface by oxidants was effective in raising shear strength but the difference in shear strength was not observed between hydrogen peroxide and nitric acid treatment. Hydrogen peroxide treatment, however, seemed to be more profitable to industrial application because of its lower concentration and easier handling than nitric acid. The bonding method by lignin-phenol adhesive through surface activation revealed inferior shear strength to phenol- and urea-formaldehyde adhesive but superior water resistance to urea-formaldehyde adhesive and this bonding method, in addition, have the advantage of lower cost compared with phenol-formaldehyde adhesive, Therefore, this bonding method by lignin-phenol adhesive through surface activation seemed to economical in manufacturing of water-resistant wood panel materials in future.

  • PDF

Flexural Modulus of Larch Boards Laminated by Adhesives with Reinforcing Material

  • Injeong LEE;Weontae OH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.14-22
    • /
    • 2023
  • Economical use of larix (larch) boards (grade 3) in industries is lower than that of imported hardwood; thus, studies have been conducted toward performance improvement of larix boards. Herein, flexural modulus of larix board samples laminated with wood adhesives polyurethane resins, poly (vinyl acetate) resins, phenol-resorcinol-formaldehyde resins, melamine-formaldehyde resins, and urea-formaldehyde resins was compared with that of the samples bonded with adhesives reinforced with mesh-type basalt fibers. Moreover, the flexural moduli of the laminated samples bonded by mesh-type basalt fibers were compared with those of reinforced samples. The results showed that boards laminated with polyurethane and urea-formaldehyde resin adhesives had higher flexural modulus than those without the lamination. In particular, the increase in the flexural modulus was relatively significant for the 2- and 3-ply board structures laminated with polyurethane adhesives compared to those with reinforcement. The 3-ply board structure without reinforcement had the highest flexural modulus when the urea-formaldehyde resin adhesive was used.

Studies on Adhesion of Fancy Veneer and Formaldehyde Emission of Wood-Based Floorings by Mole Ratios of Urea and Melamine (요소·멜라민 접착제의 수지 조성에 따른 마루판의 천연무늬단판 접착성 및 포름알데히드 방출에 대한 연구)

  • Kang, Eun-Chang;Park, Jong-Young;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.165-171
    • /
    • 2002
  • This study was to investigate the adhesion properties of fancy veneer and base panels and formaldehyde emission of wood-based floorings bonded with urea-melamine formaldehyde adhesives. We focused on stoichiometric mole ratio of reactive functional groups. The urea-melamine formaldehyde adhesives were made at twelve different formaldehyde/urea-melamine mole ratios. The interlaminated shear strength and formaldehyde emission of wood-based floorings bonded with selected adhesive among these adhesives were examined. The results showed that the bonding properties were high and the formaldehyde emission was low as the adhesive consisted of stoichiometric mole ratio of formaldehyde/urea-melamine. Interlaminated shear strengths of HDF(High Density Fiberboard) flooring were over 14 kgf/cm2 at all mole ratios. At the mole ratio of 1.0, HDF flooring showed low value of formaldehyde emission of 953 mg/L. Interlaminated shear strengths of Plywood flooring were high, 14.02 kgf/cm2 at mole ratio of 1.4. At the mole ratio of 1.0, Plywood flooring showed low value of formaldehyde emission of 0.26 mg/L.

Effect of Aceton-Formaldehyde Resin Addition on Bonding Strength of Urea-Formaldehyde Resin Adhesive (요소수지(尿素樹脂)의 접착력(接着力)에 미치는 아세톤수지(樹脂) 첨가(添加)의 영향(影響))

  • Kim, Su Chang;Bae, Young Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.60 no.1
    • /
    • pp.37-44
    • /
    • 1983
  • Thermoplastic aceton-formaldehyde resin adhesive was added as a modifier for urea-formaldehyde resin adhesive and its effects on plywood smear strength and wood failure were investigated. The results are summarized as follows: 1) The plywood shear strength and wood failure showed the highest values at $120^{\circ}C$ of hot plate temperature, but the values decreased according to the rise of addition ratio of aceton resin. 2) The variation of molar ratio of aceton resin had no effect on plywood shear strength and wood failure. 3) The plywood bonded by the addition of aceton resin showed lower values than those of urea resin bonding plywoods in shear strength and wood failure. Therefore, aceton resin was inadequate as a modifier of urea resin adhesive.

  • PDF

Comparison of Formaldehyde Emission of Wood-based Panels with Different Adhesive-hardener Combinations by Gas Chromatography and Standard Methods

  • Eom, Young Geun;Kim, Sumin;Baek, In-Chan;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.2 s.130
    • /
    • pp.29-39
    • /
    • 2005
  • Formaldehyde emissions from wood-based panels bonded with pine and wattle tannin-based adhesives, urea-formaldehyde resin (UF), melamine-formaldehyde resin (MF), and co-polycondensed resin of urea-melamine-formaldehyde (UMF) were measured by the Japanese standard method using a desiccator (JIS A 1460) and the EN 120 (European Committee For Standardization, 1991) method using the perforator value. In formaldehyde emission, all particleboards made using the wattle tannin-based adhesive with three different hardeners, paraformaldehyde, hexamethylenetetramine, and tris(hydroxyl)nitromethan (TN), satisfied the requirements of grade $E_1$. But only those made using the pine tannin-based adhesive with the hexamine as hardener met the grade $E_1$ requirements. Hexamine was effective in reducing formaldehyde emission in tannin-based adhesives when used as the hardener. While the UF resin showed a desiccator value of $7.1mg/{\ell}$ and a perforator value of 12.1 mg/100 g, the MF resin exhibited a desiccator value of $0.6mg/{\ell}$ and a perforator value of 2.9 mg/100 g. According to the Japanese Industrial Standard and the European Standard, the formaldehyde emission level of the MDF panels made with UF resin in this study came under grade $E_2$. The formaldehyde emission level was dramatically reduced by the addition of MF resin. The desiccator and perforator methods produced proportionally equivalent results. Gas chromatography, a more sensitive and advanced method, was also used. The samples for gas chromatography were gathered during the experiment involving the perforator method. The formaldehyde contents measured by gas chromatography were directly proportional to the perforator values.