• Title/Summary/Keyword: Urea Supplement

Search Result 92, Processing Time 0.029 seconds

Effects of Supplements with Different Protein Contents on Nutritional Performance of Grazing Cattle During the Rainy Season

  • Figueiras, J.F.;Detmann, E.;Franco, M.O.;Batista, E.D.;Reis, W.L.S.;Paulino, M.F.;Valadares Filho, S.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1710-1718
    • /
    • 2016
  • The objective of this study was to evaluate the effects of supplements with different crude protein (CP) contents on grazing cattle intake, digestibility, ruminal fermentation pattern, and nitrogen (N) metabolism characteristics during the rainy season. Five ruminal and abomasal cannulated Holstein${\times}$Zebu steers (296 kg body weight, BW) were used in a $5{\times}5$ Latin square design. The animals grazed five signal grass paddocks (0.34 ha). The five treatments evaluated were: Control (no supplement) and 1.0 g of supplement/kg BW with 0, 330, 660, and 1,000 g of CP/kg as-fed. The supplement was composed of starch, soybean meal, urea, and ammonium sulphate. There was a positive linear effect ($p{\leq}0.033$) of the CP content in the supplements on the organic matter (OM), CP, and digested OM intakes. The provision of supplements did not increase ($p{\geq}0.158$), on average, total and ruminal digestibilities of OM and CP. However, the increase in CP content in the supplements caused a positive linear effect ($p{\leq}0.018$) on ruminal digestibilities of OM and CP. Additionally, a quadratic effect of the CP contents of the supplements were observed (p = 0.041) for the ruminal digestibility of neutral detergent fiber corrected for ash and protein, with the highest estimate obtained with the CP content of 670 g/kg. The supply of supplements increased (p<0.001) the ruminal ammonia N concentration, which also changed linearly and positively (p<0.001) according to increase in CP content in the supplements. The apparent N balance and relative N balance (g/g N intake) were not, on average, changed ($p{\geq}0.164$) by the supplements supply. However, both showed a tendency of a linear increase ($p{\leq}0.099$) with increasing supplement CP content. The supplements increased (p = 0.007) microbial N production in the rumen, which also changed linearly and positively (p = 0.016) with increasing supplement CP content. In conclusion, protein supplementation in grazing cattle during the rainy season, while stimulating voluntary forage intake, results in higher efficiency of N utilization when compared to energy supplementation. This is a possible response to increased microbial protein synthesis in the rumen and improved N status in the animal body.

PARTIAL REPLACEMENT OF GRASS SILAGE WITH WHOLE-CROP CEREAL SILAGE FOR GROWING BEEF CATTLE

  • Raza, S.H.;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.3
    • /
    • pp.281-287
    • /
    • 1995
  • A study was conducted to investigate the effect of different inclusion levels of urea treated whole-crop wheat silage (UWCWS) in grass silage based rations on the performance of growing beef cattle. The winter wheat (variety, Riband) was harvested (in the summer of 1991) at a dry matter proportion of 520 g/kg and treated with feed grade urea at the rate of 37 kg/tonne crop dry matter and preserved in a heavy duty plastic bag using a silo press. The urea treated whole crop wheat silage (UWCWS) was mixed with grass silage to replace 0.00 (S100), 0.33 (S33) and 0.67 (S67) parts of the forage dry matter and fed ad libitum in a cross over design to 18 Simmental X Holstein Friesian growing beef animals. Two energy sources {one high in starch, rolled barley (RB) and one high in digestible fibre, sugar beet pulp (SBP)} were fed to supply sufficient energy for the efficient use of nitrogen by the rumen micro-organisms. The data on DMIF (dry matter intake of forage), TDMI (total dry matter intake), DLWG (daily live weight gain), FCR (feed conversion ratio) were recorded and faecal samples were collected to determine the digestibility coefficients. Results revealed that with the inclusion of UWCW in the animals' diets the DMI of the forage was significantly increased (p < 0.05). The highest DMIF was found in the treatment "S33" ($6.28{\pm}0.25kg$) where 67% of the silage dry matter was replaced with the UWCW and the lowest value for DMIF was observed in the control treatment ($5.03{\pm}0.23kg$). The DLWG did not differ significantly between the treatments. However, treatment "S100" showed a trend towards a superior DLWG. Feed conversion ratio in the control treatment differed significantly from "S67" and "S33". The addition of the UWCW in the animals' diet resulted in the lower FCR There was no effect of type of energy supplement on any aspect of performance either overall or in interaction with grass silage: UWCWS ratio. The regression and correlation coefficients for DMIF (r = 5.22 + 0.0184x*), DLWG (r = $1.04-0.00086x^{NS}$) and FCR (r = 4.78 = 0.022x*) on the inclusion of UWCW in the diet were calculated. The effect of the inclusion of UWCW on the overall digestibility coefficients was significant (p < 0.05). The addition of the UWCWS in the diet decreased the digestibility of the DM, OM, ADF and NFE but effect on the protein digestibility was non significant. The results of present study suggests that a DLWG slightly over 1 kg can be achieved with UWCW during the store period (period in which animal performance targets are low especially during winter) and the prediction of ME was overestimated as the high intake of DM did not reflect in improved animal performance.

Nitrogen Utilization of Cell Mass from Lysine Production in Goats

  • Seo, S.;Kim, H.J.;Lee, S.Y.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.561-566
    • /
    • 2008
  • Two experiments were conducted to evaluate nutritive value of cell mass from lysine production (CMLP) as a protein supplement for ruminants. In each experiment, animals were fed a diet containing 40% of forages and 60% of concentrates, mainly composed of rice straw and ground corn, respectively, to meet the maintenance requirements, and the diets were formulated to supply equal amounts of energy and nitrogen among treatments. In order to investigate the effect of CMLP on ruminal fermentation (Experiment 1), three Korean native goats weighing $26.1{\pm}1.4kg$ were allotted into individual cages with a $3{\times}3$ Latin square design. Each animal was fed one of three protein sources (CMLP, soybean meal (SBM), and urea). Rumen pH, bacterial and fungal counts, volatile fatty acid concentrations and acetate to propionate ratio were not significantly different among treatments. Concentration of propionate, however, was higher in SBM treatment (14.1 mM) than in CMLP (8.7 mM) or urea (9.3 mM) treatments. There was significantly more branch-chain volatile fatty acid production in CMLP (1.9 mM) and SBM (1.8 mM) treatments than in urea (1.3 mM) treatment. The number of protozoa was the highest in urea treatment, followed by CMLP and SBM treatment with significant differences. A metabolic trial (Experiment 2) was conducted to measure in vivo nutrient digestibility and nitrogen retention in Korean native goats fed CMLP and SBM. Two heavy ($35.0{\pm}1.2kg$) and two light ($25.0{\pm}0.9kg$) Korean native goats, caged individually, were used in this experiment. A heavy and a light animal were paired and supplemented with either CMLP or SBM. The animals fed CMLP showed a trend of lower total tract digestibility in all the nutrients measured; however, there was no statistical significance except for digestibility of ether extract. Nitrogen digestibility of CMLP was estimated to be about 7% units lower than that of SBM. There was a tendency for lower nitrogen retention in CMLP treatment (35.9%) compared to SBM treatment (42.3%). In summary, CMLP can be a good protein source for ruminant animals from nutritional and economic perspectives and may replace some, if not all, of SBM in a diet without losing nitrogen utilization efficiency. Further research is warranted for investigating the effect of CMLP fed with easily fermentable forage and the effective level of CMLP for replacing SBM.

Changes of Soil-Emission Gases and Microbial Diversity by Different Fertilizers Supplemented after Application of Livestock-Manure Compost in Greenhouse Soil (시설재배지(施設栽培地)에서 축분퇴비(畜糞堆肥) 시용시(施用時) 보충비종(補充費種)에 따른 토양배출(土壤排出)가스 및 미생물다양성(微生物多樣性)의 변화(變化))

  • Kang, Hang-Won;Ko, Jee-Yeon;Park, Hyang-Mee;Lee, Jae-Saeng;Rang, Ui-Gum;Park, Kyeong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.1
    • /
    • pp.52-60
    • /
    • 2000
  • This study was conducted to gain basic data for alleviation of gas emission and conservation of healthy soil environment by investigating an aspect of gas emission and microbial diversity due to the supplement of different fertilizers after application with a livestock manure compost in greenhouse soils. Green pepper was cultivated in clay loamy soil from April to August. Before planting, a livestock manure compost was applied with $741mg\;ha^{-1}$ on the basis of the phosphate content contained in compost. And then, deficient nitrogen for cropping was supplemented with either quick-acting fertilizer of urea or a controlled slow release fertilizer made from urea formaldehyde(U/F). $NH_3$ and R $NH_2$ gases emitted from soil showed a low concentration in the early stage but a maximum in 27 days after planting, then decreased rapidly and not detected after 33 days. Their average concentrations were 42% and 85% lower in the treatment of slow release fertilizer than that of urea fertilizer, respectively. $CO_2$ gas emitted under urea fertilization was ranged from 1,200 to $3,200mg{\ell}^{-1}$ and that in slow release fertilizer was $900{\sim}2,650mg\;{\ell}^{-1}$. The average concentration of urea treatment was $2,260mg{\ell}^{-1}$ and 30% higher than that of slow release fertilizer. The treatment of slow release fertilizer with the lapse of cropping time populated larger in numbers of bacteria, actinomycetes, nitrate bacteria and nitrate reduction bacteria, and ratios of bacteria and actinmycetes to fungi than that of urea fertilizer. But the number of fungi was higher in the treatment of urea fertilizer and denitrifying bacteria showed a similar trend in both treatments. The microbial diversity index, which calculated with numbers of 6 species of microorganisms, was decreased with increasing of growing stage in the range of 0.1 to 0.35 and that was higher in the tratment of slow release fertilizer than urea.

  • PDF

Effects of Amount of Concentrate Supplement on Forage Intake, Diet Digestibility and Live Weight Gain in Yellow Cattle in Vietnam

  • Ba, Nguyen Xuan;Van Huu, Nguyen;Ngoan, Le Duc;Leddin, Clare M.;Doyle, Peter T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.12
    • /
    • pp.1736-1744
    • /
    • 2008
  • Two experiments were conducted in central Vietnam to test the hypothesis that supplementation with a concentrate, comprising rice bran (45% fresh basis), maize (49%), fish meal (3%), urea (2%) and salt (1%), up to 2% of live weight (LW)/d (dry matter (DM) basis) would linearly increase digestible organic matter intake and LW gain of yellow cattle. In both experiments, there were five treatments, namely a basal diet of fresh grass fed at 1.25% of LW (experiment 1, elephant grass, Pennisetum purpureum; experiment 2, native grass) and rice straw (Oryza sativa) fed ad libitum or this diet supplemented with concentrate at about 0.3, 0.7, 1.3 or 2.0% LW. There were 4 male growing cattle per treatment in experiment 1 and 3 in experiment 2. Diets were fed for 44 (experiment 1) or 49 (experiment 2) days, with feed intake recorded daily, LW measured about weekly and digestibility measurements made over 7 days commencing on day 24 (experiment 1) or day 10 (experiment 2). The elephant grass and native grass had neutral detergent fibre (NDF) concentrations of 82 and 73% DM, and nitrogen concentrations of 1.3 and 1.8% DM, respectively. The rice straw used had a NDF concentration of 79-84% DM and nitrogen concentration of 0.8% DM. The concentrate had NDF and nitrogen concentrations of 33 and 2.8% DM. In both experiments, DM intake increased (p<0.001) linearly as the amount of concentrate consumed increased. Rice straw intake declined (p<0.001) (experiment 1: 1.24 to 0.48 kg DM/d; experiment 2: 0.95 to 0.50 kg DM/d) as concentrate intake increased. Grass intake was not significantly affected by concentrate intake in either experiment. The lowest amount of concentrate supplement increased forage intake, after which substitution rate increased as the amount of concentrate consumed increased. However, substitution rates at the highest amount of concentrate consumed were modest at 0.3 to 0.5 kg DM reduction in forage intake/kg DM supplement consumed. In both experiments, digestible organic matter intake increased linearly (p<0.001) (experiment 1: 1.16 to 2.38 kg/d; experiment 2: 1.30 to 2.49 kg/d) as the amount of supplement consumed increased, as did LW gain (experiment 1: 0.15 to 0.81 kg/d; experiment 2: 0.15 to 0.77 kg/d). This was associated with significant (p<0.01) linear increases in organic matter intake and apparent organic matter digestibility. Neutral detergent fibre digestibility declined as concentrate intake increased, but the effect was not significant (p = 0.051) in experiment 2. These results are discussed in relation to existing literature and potential to improve the profitability of cattle fattening in central Vietnam.

Effect of Supplemental Corn Dried Distillers Grains with Solubles Fed to Beef Steers Grazing Native Rangeland during the Forage Dormant Season

  • Murillo, M.;Herrera, E.;Ruiz, O.;Reyes, O.;Carrete, F.O.;Gutierrez, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.666-673
    • /
    • 2016
  • Two experiments were conducted to evaluate the effects of the level of corn dry distillers grains with solubles (CDDGS) supplementation on growing performance, blood metabolites, digestion characteristics and ruminal fermentation patterns in steers grazing dormant forage. In Exp. 1, of growth performance, 120 steers ($204{\pm}5kg$ initial body weight [BW]) were distributed randomly into 3 groups (each of 40 steers), which were provided with the following levels of CDDGS supplement: 0%, 0.25%, or 0.50% BW. All groups of steers were grazed for 30 days in each of 3 grazing periods (March, April, and May). Approximately 1,000 ha of the land was divided with electric fencing into 3 equally sized pastures (333 ha in size). Blood samples were collected monthly from 20 steers in each grazing group for analysis of glucose (G), urea-nitrogen (UN) and non-esterified fatty acids. Final BW, average daily gain (ADG) and supplement conversion (CDDGS-C) increased with increasing levels of CDDGS supplementation (p<0.05).The CDDGS supplementation also increased the plasma G and UN concentrations (p<0.05). In Exp. 2, of digestive metabolism, 9 ruminally cannulated steers ($BW=350{\pm}3kg$) were distributed, following a completely randomized design, into groups of three in each pasture. The ruminally cannulated steers were provided the same levels of CDDGS supplementation as in the growing performance study (0%, 0.25%, and 0.50% BW), and they grazed along with the other 40 steers throughout the grazing periods. The dry matter intake, crude protein intake, neutral detergent fiber intake (NDFI), apparent digestibility of dry matter (ADDM), crude protein (ADCP) and neutral detergent fiber (ADNDF) increased with increasing levels of CDDGS supplementation (p<0.05). The ruminal degradation rates of CP (kdCP), NDF (kdNDF) and passage rate (kp) also increased with increasing levels of CDDGS supplementation (p<0.05). Ruminal ammonia nitrogen ($NH_3$-N) and propionate concentrations also increased with increasing levels of CDDGS supplementation (p<0.05). However, acetate concentrations decreased with increasing levels of CDDGS supplementation (p<0.05). Liquid dilution rate increased with increasing levels of CDDGS supplementation but ruminal liquid volume decreased (p<0.05). On the basis of these findings, we can conclude that CDDGS supplementation enhanced the productive performance of cattle grazing native rangeland without negatively affecting forage intake, glucose and urea-nitrogen blood concentrations, ruminal degradation and ruminal fermentation patterns.

The Nutritive Value of Rice Straw in Relation to Variety, Urea Treatment, Location of Growth and Season, and its Prediction from in Sacco Degradability

  • Soebarinoto, Soebarinoto;Chuzaemi, Siti;van Bruchem, Jaap;Hartutik, Hartutik;Mashudi, Mashudi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.215-222
    • /
    • 1997
  • Ten rice varieties were planted at two locations (lowland and highland), during the wet and dry seasons of different years. In vivo digestibility and voluntary intake of the straw, were determined in groups of fat-tail sheep, supplemented with $18g{\cdot}kg^{-0.75}$ concentrate DM, containing ~20% crude protein. Voluntary intake of digestible straw organic matter (DOMI) consistently varied from 15.2 to $20.9g{\cdot}kg^{-0.75}$ between straw varieties, averaged over locations, years and seasons, despite considerable variation between individual batches. This variation in the nutritive value of the straw was independent of straw and grain yield, so it would seem that there is scope for selection of rice varieties with straw of higher nutritive value. The variation in DOMI of straw among location of growth, year and season, was of a magnitude similar to the improvement brought about by urea-ammoniation. The in sacco degradation characteristics and digestibility of rice straw residues were superior to those of the offered straw. This can be attributed to a preference for rice straw leaves relative to stems. Averaged over location of growth, year and season, characteristics of in sacco degradation, i.e. the rate of fermentative degradation and the truly undegradable fraction, emerged as accurate predictors of the nutritive value of rice straw.

Effect of Partial Replacement of Dietary Protein by a Leaf Meal Mixture Containing Leucaena leucocephala, Morus alba and Azadirachta indica on Performance of Goats

  • Patra, A.K.;Sharma, K.;Dutta, Narayan;Pattanaik, A.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1732-1737
    • /
    • 2002
  • This study was conducted to examine the effect of Leucaena leucocephala-Morus alba-Azadirachta indica (2:1:1) based leaf meal mixture as nitrogen source to partially replace (50%) soybean meal in conventional supplements on the performance of goats. Twelve non-descript female goats were divided into two equal groups in a completely randomized design to receive either the leaf meal mixture based supplement (LMAM) or soybean meal incorporated concentrate (SBM) and wheat straw for ad libitum intake for a two month period. The goats given LMAM and SBM concentrate had similar dry matter intake ($50.2{\pm}1.67g/kg\;W^{0.75}$) and nutrient digestibility. Nitrogen intake and its faecal and urinary excretion were similar irrespective of diets. The balance of nitrogen was positive and comparable ($1.63{\pm}0.08g/d$) in both dietary treatments. The plane of nutrition on both diets was comparable and the digestible crude protein and total digestible nutrients values of the composite diets offered did not differ significantly between the dietary supplements. The serum concentration of enzymes alanine aminotransferase and aspartate aminotransferase were statistically similar in both the groups, while haemoglobin and serum urea levels were significantly (p<0.05) higher in LMAM and SBM treatments, respectively. It was concluded that the leaf meal mixture of Leucaena leucocephala-Morus alba-Azadirachta indica could be used as a vegetable protein supplement to wheat straw based diet of goats.

Influence of Condensed Tannins from Ficus bengalensis Leaves on Feed Utilization, Milk Production and Antioxidant Status of Crossbred Cows

  • Dey, Avijit;De, Partha Sarathi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.342-348
    • /
    • 2014
  • This study was conducted to examine the effects of condensed tannins (CT) from Ficus bengalensis leaves on the feed utilization, milk production and health status of crossbred cows. Eighteen crossbred dairy cows at their second and mid lactation (avg. BW $351.6{\pm}10.6$ kg) were randomly divided into two groups of nine each in a completely randomized block design and fed two iso-nitrogenous supplements formulated to contain 0% and 1.5% CT through dried and ground leaves of Ficus bengalensis. The diets were designated as CON and FBLM, respectively and fed to cows with a basal diet of rice straw to meet requirements for maintenance and milk production. The daily milk yield was significantly (p<0.05) increased due to supplementation of FBLM diet. The 4% fat corrected milk yield was also significantly (p<0.01) higher due to increased (p<0.05) milk fat in cows under diet FBLM as compared to CON. The inclusion of CT at 1.5% in the supplement did not interfere with the feed intake or digestibility of DM, OM, CP, EE, NDF, and ADF by lactating cows. Digestible crude protein (DCP) and total digestible nutrients (TDN) values of the composite diets were comparable between the groups. The blood biochemical parameters remained unaltered except significantly (p<0.05) lowered serum urea concentration in cows fed FBLM diet. There was a significant (p<0.05) increase intracellular reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activity in cows supplemented with condensed tannins. The total thiol group (T-SH) was found to be higher with reduction in lipid peroxidation (LPO) in cows of FBLM group. The cost of feeding per kg milk production was also reduced due to supplementation of Ficus bengalensis leaves. Therefore, a perceptible positive impact was evident on milk production and antioxidant status in crossbred cows during mid-lactation given supplement containing 1.5% CT through Ficus bengalensis leaves.

Feeding of Cassava Hay for Lactating Dairy Cows

  • Wanapat, M.;Puramongkon, T.;Siphuak, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.4
    • /
    • pp.478-482
    • /
    • 2000
  • Whole cassava (Manihot esculenta, Crantz) crop was harvested about 10-15 cm above ground at 3 months after planting and sun dried for 1-3 days or until the leaves were crispy-dried and the branches and stems were mostly wilted to produce cassava hay. Cassava hay (CH) contained 86.3% DM, 8.9% ash, 23.6% CP, 44.3% NDF, 30.0% ADF, 5.8% ADL, 0.257% condensed tannin and 0.35 mg % HCN, respectively. In addition, CH contained relatively higher amino acid than alfalfa hay especially methionine, isoleucine, leucine and lysine. Ruminal fermentation of CH resulted in high concentrations of $C_2$, $C_3$, and $C_4$ at 72, 17 and 7 mol/100 mole, respectively. A feeding trial was conducted to study on effect of feeding of cassava hay in late lactating dairy cows fed on urea-treated rice straw during the dry season on their intake, ruminal pH, $NH_3$-N, milk yield and compositions. Thirty, Holstein-Friesian crossbred cows in their first lactation were randomly assigned in a randomized complete block design to receive five different dietary treatments: T1=supplementation of concentrate to milk yield at 1:2, T2=supplementation of concentrate to milk yield at 1:2+0.56 kg DM, T3=supplementation of concentrate to milk yield at 1:3+1.3 kg DM CH, T4=supplementation of concentrate to milk yield at 1:4+1.70 kg DM CH, T5=CH fed on ad libitum+small concentrate supplement. All cows received urea-treated rice straw as a roughage source throughout a 80 d feeding trial. The experiment revealed that cassava hay contained high level of protein and minimal level of tannin at 3 months of harvest. Tannin intake ranged from 1.44 to 13.36 g/hd/d and did not affect on urea-treated rice straw intake. Milk yield across treatments were similar (5.4-6.3 kg/hd/d) (p>0.05) but 3.5% FCM was highest in cows received CH at 1.70 kg/hd/d. Feeding of cassava hay resulted in increasing milk fat (4.0 to 4.6%) (p<0.05) and milk protein (3.8 to 5.3%) (p<0.05). Moreover, the use of CH could reduce concentrate supplementation to milk yield from 1:2 to 1:4, respectively, thus resulted in more milk income return.