• 제목/요약/키워드: Urea Solution

검색결과 300건 처리시간 0.032초

Numerical analysis of NOx reduction for compact design in marine urea-SCR system

  • Choi, Cheolyong;Sung, Yonmo;Choi, Gyung Min;Kim, Duck Jool
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권6호
    • /
    • pp.1020-1033
    • /
    • 2015
  • In order to design a compact urea selective catalytic reduction system, numerical simulation was conducted by computational fluid dynamics tool. A swirl type static mixer and a mixing chamber were considered as mixing units in the system. It had great influence on flow characteristics and urea decomposition into ammonia. The mixer caused flow recirculation and high level of turbulence intensity, and the chamber increased residence time of urea-water-solution injected. Because of those effects, reaction rates of urea decomposition were enhanced in the region. When those mixing units were combined, it showed the maximum because the recirculation zone was significantly developed. $NH_3$ conversion was maximized in the zone due to widely distributed turbulence intensity and high value of uniformity index. It caused improvement of $NO_x$ reduction efficiency of the system. It was possible to reduce 55% length of the chamber and connecting pipe without decrease of $NO_x$ reduction efficiency.

STABILIZATION WITH SULFURIC ACID OF THE CRUDE PROTEIN IN UREA-TREATED RICE STRAW

  • Promma, S.;Tasaki, I.;Cheva-Isarakul, B.;Indratula, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제7권4호
    • /
    • pp.481-486
    • /
    • 1994
  • The effect of neutralization of urea-treated rice straw with sulfuric acid was investigated. Long-cut (15-20 cm) and short-cut (2-3 cm) rice straw were treated with 6% urea for 21 days, and the treated straw was mixed with an acid-molasses solution to neutralize free ammonia and kept airtightly in a plastic bag for 24 hours. The neutralized and non-neutralized straw were dried and subjected to chemical analysis and in vitro dry matter (DM) digestibility determination. The in vitro DM digestibility as well as crude protein (CP) content were remarkably improved by neutralization. Short-cutting of the straw before treatment gave a better result than the long-cut samples. Neutralization with sulfuric acid also affected the chemical composition and increased sulfur content of samples. The CP thus fixed by neutralization was proven to be kept stable for 3 months, and in vitro DM digestibility was not affected by the storing period.

선회형 이유체노즐의 노즐캡 형상에 따른 분무특성 (Effect of Nozzle Cap Geometry for Swirl-Type Two-Fluid Nozzle on the Spray Characteristics)

  • 최윤준;강신명;김덕진;이지근
    • 한국분무공학회지
    • /
    • 제13권3호
    • /
    • pp.134-142
    • /
    • 2008
  • In the case of heavy duty diesel engines, the Urea-SCR system is currently considered to reduce the NOx emission as a proved technology, and it is widely studied to get the high performance and durability. However, the nozzles to inject the urea-water solution into the exhaust pipe occur some problems, including the nozzle clogging, deposition of urea-water solution on the inner wall of the exhaust pipe, resulting in the production of urea salt. In this study, a swirl-type twin-fluid nozzle to produce more fine droplets was used as a method to solve the problems. The effect of the nozzle cap geometry, including the length to diameter ratio ($l_o/d_o$) and chamfer, on the spray characteristics were investigated experimentally. The length to diameter ratio of nozzle cap were varied from 0.25 to 1.125. The chamfer angle of the nozzle cap was constant at 90o. The mean velocity and droplet size distributions of the spray were measured using a 2-D PDA (phase Doppler analyzer) system, and the spray half-width, AMD (arithmetic mean diameter) and SMD (Sauter mean diameter) were analyzed. At result, The larger length to diameter ratio of nozzle cap were more small SMD and AMD. The effect of the chamfer did increase the radial velocity, while it did not affect the atomization effect.

  • PDF

Ethyl carbamate 전구체인 N-carbamyl 화합물과 에탄올의 반응에 대한 NaCl의 영향 (Effects of NaCl on the Ethanolysis of N-Carbamyl Compounds to Form Ethyl Carbamate)

  • 고은미;권훈정
    • 한국식품과학회지
    • /
    • 제39권1호
    • /
    • pp.94-98
    • /
    • 2007
  • 발효식품에 다량 함유되어 있는 NaCl이 ethyl carbamate 전구체인 N-carbamyl 화합물과 에탄올과의 화학반응에 영향을 주는 것으로 확인되었다. N-carbamyl 화합물과 에탄올의 화학반응 속도를 비교한 결과, carbamyl phosphate, urea, 시트룰린 순서로 ethyl carbamate의 생성 속도가 감소되었다. 또한 NaCl은 ethyl carbamate의 주요한 전구체로 추정되는 carbamyl phosphate 또는 시트룰린과 에탄올의 화학반응을 억제한 반면에, urea와 에탄올과의 반응은 오히려 촉진하였다. 앞으로 발효식품에서 ethyl carbamate 및 그 전구체의 생화학적 생성 기전뿐만 아니라 전구체간의 화학반응에 대한 NaCl의 역할에 대한 연구가 지속되어야 할 것으로 사료된다.

디젤엔진 요소수 분사 SCR 시스템에서 촉매 내 암모니아 흡장량의 증가에 따른 NOx 저감효율 향상 특성에 관한 연구 (A Study on the Improvement of Diesel NOx Conversion Efficiency by Increasing the Ammonia Amount Adsorbed in a SCR Catalyst)

  • 김양화;임옥택;김홍석
    • 한국분무공학회지
    • /
    • 제25권4호
    • /
    • pp.196-203
    • /
    • 2020
  • Nowadays, urea SCR technology is considered as the most effective NOx reduction technology of diesel engine. However, low NOx conversion efficiency under low temperature conditions is one of its problems to be solved. This is because injection of UWS (Urea Water Solution) is impossible under such a low temperature condition due to the problem of insufficient of urea decomposition and urea deposits. In several previous studies, it has been reported that appropriate control of the amount of ammonia adsorbed on SCR catalyst can improve the NOx conversion efficiency under low temperature conditions. In this study, we tried to find out how much the NOx conversion efficiency increases with respect to the amount of ammonia adsorbed on the catalyst, and what the temperature conditions that the ammonia slip occurs. This study shows the results of 8 times repeated WHTC test with a diesel engine, in which UWS was injected with NH3/NOx mole ratio of '1'. Through this study, it was found that 13% of the NOx conversion efficiency of WHTC increased while the θ (ammonia adsorption rate) increased from "0%" to "22%". In addition, it is found that in cases of high θ value, the significant improvement of NOx conversion efficiency at low temperatures presented during the beginning period of WHTC and at high temperature and transient conditions presented during last part of WHTC test. The NH3 slip occurring condition was 250℃ of catalyst temperature and 10% of θ, and the amount of NH3 slip increased as the temperature and θ are increased.

상용디젤엔진의 EURO-IV 배기규제 대응을 위한 Urea-SCR 시스템의 나노입자 배출특성에 관한 실험적 연구 (An Experimental Study of Nano PM Emission Characteristics of Commercial Diesel Engine with Urea-SCR System to Meet EURO-IV)

  • 이천환;조택동
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.128-136
    • /
    • 2007
  • It is well known that two representative methods satisfy EURO-IV regulation from EURO-III. The first method is to achieve the regulation through the reduction of NOx in an engine by utilizing relatively high EGR rate and the elimination of subsequently increased PM by DPF. However, it results in the deterioration of fuel economy due to relatively high EGR rate. The second is to use the high combustion strategy to reduce PM emission by high oxidation rate and trap the high NOx emissions with DeNOx catalysts such as Urea-SCR. While it has good fuel economy relative to the first method mentioned above, its infrastructure is demanded. In this paper, the number distribution of nano PM has been evaluated by Electrical Low Pressure Impactor(ELPI) and CPC in case of Urea-SCR system in second method. From the results, the particle number was increased slightly in proportion to the amount of urea injection on Fine Particle Region, whether AOC is used or not. Especially, in case of different urea injection pressure, the trends of increasing was distinguished from low and high injection pressure. As low injection pressure, the particle number was increased largely in accordance with the amount of injected urea solution on Fine Particle Region. But Nano Particle Region was not. The other side, in case of high pressure, increasing rate of particle number was larger than low pressure injection on Nano Particle Region. From the results, the reason of particle number increase due to urea injection is supposed that new products are composited from HCNO, sulfate, NH3 on urea decomposition process.

$Al_2O_3$로 피복시킨 세라믹 복합분체의 제조 및 특성 : (I) 피복용 혼합 알루미늄 염 용액의 가수분해 (Preparation and Characteristics of Ceramic Composite Powders Coated with $Al_2O_3$: (I) Hydrolysis of Mixed Aluminum Salt Solution for Coating)

  • 현상훈;정형구
    • 한국세라믹학회지
    • /
    • 제27권7호
    • /
    • pp.851-860
    • /
    • 1990
  • The hydrolysis-precipitation reaction of mixed aluminum salt solutions of aluminum sulfate, aluminum nitrate, and urea has been investigated to obtain narrow-sized and unagglomerated fine spherical precipitates of aluminum hydroxide required for coating core particles. The hydrolysis-precipitatin reaction could be controlled to be appropriate to coating processes by usign urea as a pH control-agent. As the concetration of total Al3+ ion and the molar ratio of SO42-/Al3+ in starting solutions became smaller and also as the vol. ratio of water/solution for hydrolyzing mixed aluminum salt solution became larger, the morphology of precipitates tended to be more unagglomerated and spherical, while their size(0.5longrightarrow0.05${\mu}{\textrm}{m}$) to be smaller. The optimum hydrolysis condition for coating processes was to hydrolyze the mixed aluminum salt solution, in which the molar ratio of SO42-/Al3+ was 0.75, while the amount of water corresponding to the vol. ratio of water/solution of 15. The precipitate was the aluminum hydroxide which sulfate ions were strongly adsorbed on and the maximum yield in the hydrolysis-precipitation reaction was about 20%.

  • PDF

산업폐기물 소각로에서 SNCR공정에 의한 NOx 제거효율에 관한 연구 (A Study on NOx Removal Efficiency using SNCR Process in the Industrial Waste Incineration Plant)

  • 류해열;김민철;정종현;이강우;정진도
    • 한국환경보건학회지
    • /
    • 제31권4호
    • /
    • pp.332-339
    • /
    • 2005
  • The environmental regulations in the world has been reinforced and many nations has devoted themselves to the development of cost-effective technology. Selective catalyst reduction(SCR) and selective non-catalyst reduction (SNCR) processes are mainly used to treat nitrogen oxidants generated from fossil-fuel combustion. One of these typical technologies for reduction of do-NOx is SNCR process has increased continuously because of the low cost for building and maintenance. Nevertheless the researches on the application to real scale plant by the reductant like Urea are rarely studied. In this paper, an experimental investigations were performed on the SNCR process in the industrial waste incineration plant. With no reducing agent, the concentration of NOx stayed in around 180 ppm $(O_2\;12\%)$ with the exhausting temperature of $950^{\circ}C$ and changed within the range of 20 ppm to remain relatively consistent. When $10\;wt\%)$ of a solution was added, the efficiency of denitrification reached above $61.4\%$ with the NSR of 2.0 and the exhausting temperature of $950^{\circ}C.$ When the concentration of the urea solution was set to $10\;wt\%$ and the sprinkling to four nozzles, the reaction temperature was reduced to about $50~100^{\circ}C$ with a mixture of $10\;wt\%\;CH_3OH\;and\;5wt\%\;Na_2CO_3$ in $40\;wt\%$ of the solution. The NOx removal efficiency increased to $78.4\%,$ achieving a broader and expansive range of reaction temperatures than the addition of an unmixed pure solution.

Urea-SCR용 스월 인젝터의 니들 리프트 형상에 따른 유동특성에 대한 연구 (Study on the Flow Characteristics of Urea-SCR Swirl Injector according to the Needle Lift Profile)

  • 곽은조;박성영
    • 한국산학기술학회논문지
    • /
    • 제17권6호
    • /
    • pp.650-655
    • /
    • 2016
  • 본 논문에서는 요소수를 적용하는 SCR 인젝터의 내부유동에 대한 전산 유동해석을 수행하였다. 유동해석에 적용된 인젝터는 경사진 노즐과 스월디스크를 갖는 스월타입의 단홀 인젝터이다. 인젝터 니들의 최대 리프트 및 열림 속도를 인젝터의 설계 변수로 선정하였다. 비정상 상태로 작동하는 노즐 내부의 유동 특성을 해석하기 위하여, 움직이는 물체에 적용이 가능한 Moving Grid 기법을 적용하여 정밀한 인젝터 니들의 움직임을 모사하였다. 유동해석 결과, 인젝터 니들의 속도가 증가할수록 출구를 통한 요소수 유량은 감소하는 것으로 나타났다. 이는 인젝터 니들의 속도가 빨라질수록, 인젝터 니들 하부의 빈 공간을 채우려는 유량이 증가하고, 이러한 요소수 유량의 증가가 노즐 출구로 방출되는 유량의 감소를 유발하게 된다. 요소수 유동이 인젝터 노즐에서 출구 쪽으로 진행할수록, 스월 유동은 감소하였다. 이는 유동과 노즐 벽면과의 마찰에 기인한 것으로 사료된다. 또한, 최대 리프트 유지기간에서, 니들 리프트가 높을수록 스월 계수와 평균 스월 계수가 증가하는 경향을 보였다. 본 연구의 결과는 관련된 Urea-SCR 인젝터의 기본 설계 자료로 활용될 수 있을 것이다.

Urea-SCR 분사시스템의 DeNOx 저감 성능 향상과 NH3 슬립저감을 위한 모델 기반 제어알고리즘 개발 및 구현 (The Development and Implementation of Model-based Control Algorithm of Urea-SCR Dosing System for Improving De-NOx Performance and Reducing NH3-slip)

  • 정수진;김우승;박정권;이호길;오세두
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.95-105
    • /
    • 2012
  • The selective catalytic reduction (SCR) system is a highly-effective aftertreatment device for NOx reduction of diesel engines. Generally, the ammonia ($NH_3$) was generated from reaction mechanism of SCR in the SCR system using the liquid urea as the reluctant. Therefore, the precise urea dosing control is a very important key for NOx and $NH_3$ slip reduction in the SCR system. This paper investigated NOx and $NH_3$ emission characteristics of urea-SCR dosing system based on model-based control algorithm in order to reduce NOx. In the map-based control algorithm, target amount of urea solution was determined by mass flow rate of exhaust gas obtained from engine rpm, torque and $O_2$ for feed-back control NOx concentration should be measured by NOx sensor. Moreover, this algorithm can not estimate $NH_3$ absorbed on the catalyst. Hence, the urea injection can be too rich or too lean. In this study, the model-based control algorithm was developed and evaluated on the numerical model describing physical and chemical phenomena in SCR system. One channel thermo-fluid model coupled with finely tuned chemical reaction model was applied to this control algorithm. The vehicle test was carried out by using map-based and model-based control algorithms in the NEDC mode in order to evaluate the performance of the model based control algorithm.