• Title/Summary/Keyword: Urban wind

Search Result 612, Processing Time 0.024 seconds

Classification of Synoptic Meteorological Conditions for the Medium or Long Term Atmospheric Environmental Assessment in Urban Scale (도시규모 중·장기 대기질영향평가를 위한 종관기상조건의 분류)

  • Kim, Cheol-Hee;Son, Hye-Young;Kim, Ji-A
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.2
    • /
    • pp.157-168
    • /
    • 2007
  • In case there is a need to run the multi-year urban scale air qulaity model, it is a difficult task due to the computational demand, requiring the statistical approach for the long time atmospheric environmental assessment. In an effort to approach toward long term urban assessment, the sixteen synoptic meteorological conditions are statistically classified from the estimated geostrophic wind speeds and directions of 850 hPa geopotential height field during 2000 ~ 2005. The geostrophic wind directions are subdivided into four even intervals (north, east, south, and west), geostrophic wind speeds into two classes(${\leq}5m/s$ and >5m/s), and daily mean cloud amount into 2 classes(${\leq}5/10$ and >5/10), which result into sixteen classes of the synoptic meteorological cases for each season. The frequency distributions for each 16 synoptic meteorological case are examined and some discussions on how these synoptic classifications can be used in the environmental assessment are presented.

A study on climate design using cold air flow to reduce air contaminant concentration of underground garage in the apartment complex (냉기류를 이용하여 공동주택단지 내 지하주차장 오염농도를 저감하는 기후 디자인에 관한 연구)

  • Kim, Tae Han;Cho, Kyung Hak;Chroi, Ji Hye;Kim, Seog cheol
    • KIEAE Journal
    • /
    • v.11 no.1
    • /
    • pp.29-38
    • /
    • 2011
  • This study suggested practical application of climate design on apartment complex with the focus on the use of Cold Air Flow and green building design method. The domestic research on the wind path analysis has been associated since the early 21th century in urban planning and site planning, this initiative study aimed to mitigate the urban heat island effect and to promote the sustainable urban development. It is, however, mostly focused on the flow analysis and heat flow in the urban context, due to the poor application of the wind path analysis in actual planning and design. Special attention is paid to the possibilities of identifying and developing the application methods in relation to Cold Air Flow and building design. This study examined these relations and suggested some trenchant approach to a more comprehensive and efficient use of the wind flow analysis in climate design.

A Study on the Effectiveness of Wind Corridor Construction forImproving Urban Thermal Environment: A Case study of Changwon, South Korea (도시 열환경 개선을 위한 취약지역 선정 및 바람길 조성 방안: 창원시를 대상으로)

  • Kim, Jong-Sung;Kang, Jung-Eun
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.187-202
    • /
    • 2021
  • This study examined the effectiveness of wind corridor construction by analyzing the thermal environment, cold air generation, ventilation, and geographical characteristics to improve urban thermal environment and establish the basis for specialized strategy in Changwon-si, Gyeongsangnam-do. Using spatial analysis and remote sensing techniques, surface temperature, land cover and land use, wind field, and slope were measured and through this, a wind corridor analysis model was constructed. As a result of the analysis as of 2020, Changwon-si generally has land cover characteristics that are advantageous for the generation of cold air, but the temperature in most urban areas is the highest, and the temperature in areas such as north Changwon area, Jinbukmyeon, Ung-dong, and Ungcheon-dong are relatively high. There was a typical trend of high average wind speed in mountain regions and low average wind speed in urban areas. Accordingly, the north Changwon area, the former Changwon downtown area, the Hogye-ri and Pyeongseong-ri areas, and the Changpo Bay area are derived as vulnerable areas to thermal environment, and various measures to reduce temperature and improve air quality that the inflow of cold air into the area considering the characteristics of each area and securing wind ventilation between the surrounding mountains, reservoirs, and park areas were proposed.

A "Dynamic Form-Finding" Approach to Environmental-Performance Building Design

  • Yao, Jia-Wei;Lin, Yu-Qiong;Zheng, Jing-Yun;Yuan, Philip F.
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.2
    • /
    • pp.145-151
    • /
    • 2018
  • Newly-designed high-rise buildings, both in China and abroad, have demonstrated new innovations from the creative concept to the creative method. from the creative concept to the creative method. At the same time, digital technology has enabled more design freedom in the vertical dimension. "Twisting" has gradually become the morphological choice of many city landmark buildings in recent years. The form seems more likely to be driven by the interaction of aesthetics and structural engineering. Environmental performance is often a secondary consideration; it is typically not simulated until the evaluation phase. Based on the research results of "DigitalFUTURE Shanghai 2017 Workshop - Wind Tunnel Visualization", an approach that can be employed by architects to design environmental-performance buildings during the early stages has been explored. The integration of a dynamic form-finding approach (DFFA) and programming transforms the complex relationship between architecture and environment into a dialogue of computer language and dynamic models. It allows the design to focus on the relationship between morphology and the surrounding environment, and is not limited to the envelope form itself. This new concept of DFFA in this research consists of three elements: 1) architectural form; 2) integration of wind tunnel and dynamic models; and 3) environmental response. The concept of wind tunnel testing integrated with a dynamic model fundamentally abandons the functional definition of the traditional static environment simulation analysis. Instead it is driven by integral environmental performance as the basic starting point of morphological generation.

Relationship between Pollen Concentration and Meteorological Condition in an Urban Area (도시지역 공중화분 농도와 기상조건과의 관계)

  • Oh, In-Bo;Kim, Yangho;Choi, Kee-Ryong;Lee, Ji Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.780-788
    • /
    • 2013
  • This study attempted to determine important meteorological parameters related to airborne pollen concentrations in urban areas. Hourly pollen measurement data were prepared from a regular sampling with a volumetric Burkard spore trap at a site in the Ulsan city, during the spring season (March~May) of 2011. Results showed that the daily mean and maximum concentrations for total pollen counts during the spring season were statistically significantly correlated with both air temperature and wind speed; daily mean pollen concentration was the most highly related to daily maximum temperature (r=0.567, p<0.001). It was also identified that pollen concentration has a stronger relationship with wind speed at the rural site than at the urban one, which confirms that strong wind conditions over the pollen sources area can be favorable for pollen dispersal, resulting in increases in airborne pollen concentrations downwind. From the results of an oak-pollen episode analysis, it was found that there was a significant relationship between hourly variation of oak pollen concentrations and dynamic meteorological factors, such as wind and mixing height (representing the boundary layer depth); especially, a strong southwestern wind and elevated mixing height was associated with high nocturnal concentrations of oak pollen. This study suggests that temperature, wind, and mixing height can be important considerations in explaining the pollen concentration variations. Additional examination of complex interactions of multiple meteorological parameters affecting pollen behavior should be carried out in order to better understand and predict the temporal and spatial pollen distribution in urban areas.

Design of Fuzzy Logic based MPPT(Maximum Power Point Tracking) Algorithm for Urban Wind Turbine System (도시형 풍력발전 시스템을 위한 퍼지로직 기반 MPPT 알고리즘 개발)

  • Youk, Yui-Su;Kim, Sung-Ho;Lee, Jang-Ho;Jang, Mi-Hye
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.21-29
    • /
    • 2010
  • Generally, wind industry has been oriented to large power systems which require large windy areas and often need to overcome environment restrictions. However, small-scale wind turbines are closer to the consumers and have a large market potential, and much more efforts are required to become economically attractive. In this paper, a prototype of a small-scale urban wind generation system for battery charging application is described and a fuzzy logic based MPPT(Maximum Power Point Tracking) algorithm which can be effectively applied to urban wind turbine system is proposed. Through Matlab based simulation studies and actual implementation using DSP of the proposed algorithm, the feasibility of the proposed scheme is verified.

A analysis on the output characteristic of the horizontal and vertical wind turbine related to wind velocity (풍속에 따른 수평형과 수직형 풍력발전기의 출력특성에 관한 분석)

  • Choi Jang-Kyun;Cha In-Su
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.191-193
    • /
    • 2006
  • The various wind turbines have been designed and developed for the century. The precision design of the blade and turbine system considering the wind circumstance is required for the high efficiency. In this paper, we investigated the output characteristics of the horizontal and vertical wind turbine related to the wind velocity. Furthermore we will intend to design the wind turbine blade adapted the urban wind circumstance.

  • PDF

A Study on Urban Environmental Climate Mapping Method for Sustainable Urban Planning in Daegu (대구지역의 환경친화적 도시계획을 위한 도시환경기후지도 작성에 관한 연구)

  • Park, Myung-Hee;Jung, Woo-Sik;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.20 no.4
    • /
    • pp.465-482
    • /
    • 2011
  • To preserve atmospheric environment of urban areas, it needs to create urban space considering air pollution sources and natural and geographical properties such as wind circulation. According to this study could examine climate and environmental characteristics of Daegu and accordingly suggest a climate map in urban environment and an "advice map" in urban planning. The urban area(area paved with asphalt and concrete) of Daegu has increased by more than five times since 1960. In addition, the analysis of thermal environment through satellite data shows that the surface temperature between a place paved with artificial structures and a farmland shows $10{\sim}20^{\circ}C$ difference during the daytime in the summer. Regarding the parks inhibiting the heat island of a city have the small area of trees, and the road paved with concrete is wide so that they hardly serve as the source of heat absorption. As Apsan is located to the south of Daegu and Palgonsan to the north and Daegu has east high west low type, mountain wind from mountains in the south and north passes a city and delivers heat and air pollutions at night. In the west of Daegue, there is the poorest environment and industrial facilities and environmental basic facilities are mostly located, so large residential complexes that are being built around the industrial facilities as if they set up a folding screen and therefore the poor environment is increasingly worse.

A Study on Estimation of Inflow Wind Speeds in a CFD Model Domain for an Urban Area (도시 지역 대상의 CFD 모델 영역에서 유입류 풍속 추정에 관한 연구)

  • Kang, Geon;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • In this study, we analyzed the characteristics of flow around the Daeyeon automatic weather station (AWS 942) and established formulas estimating inflow wind speeds at a computational fluid dynamics (CFD) model domain for the area around Pukyong national university using a computational fluid dynamics (CFD) model. Simulated wind directions at the AWS 942 were quite similar to those of inflows, but, simulated wind speeds at the AWS 942 decreased compared to inflow wind speeds except for the northerly case. The decrease in simulated wind speed at the AWS 942 resulted from the buildings around the AWS 942. In most cases, the AWS 942 was included within the wake region behind the buildings. Wind speeds at the inflow boundaries of the CFD model domain were estimated by comparing simulated wind speeds at the AWS 942 and inflow boundaries and systematically increasing inflow wind speeds from $1m\;s^{-1}$ to $17m\;s^{-1}$ with an increment of $2m\;s^{-1}$ at the reference height for 16 inflow directions. For each inflow direction, calculated wind speeds at the AWS 942 were fitted as the third order functions of the inflow wind speed by using the Marquardt-Levenberg least square method. Estimated inflow wind speeds by the established formulas were compared to wind speeds observed at 12 coastal AWSs near the AWS 942. The results showed that the estimated wind speeds fell within the inter quartile range of wind speeds observed at 12 coastal AWSs during the nighttime and were in close proximity to the upper whiskers during the daytime (12~15 h).

A Proposal of Direction of Wind Ventilation Forest through Urban Condition Analysis - A Case Study of Pyeongtaek-si - (도시 여건 분석을 통한 바람길숲 조성방향 제시 - 평택시를 사례로 -)

  • SON, Jeong-Min;EUM, Jeong-Hee;SUNG, Uk-Je;BAEK, Jun-Beom;KIM, Ju-Eun;OH, Jeong-Hak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.101-119
    • /
    • 2020
  • Recently, as a plan to improve the particulate matter and thermal environment in the city, urban forests acting as wind ventilation corridor(wind ventilation forest) are promoted nationwide. This study analyzed the conditions for the creation of wind ventilation forest(vulnerable areas of the particulate matter and thermal environment, distribution of wind ventilation forest, characteristics of ventilation corridor) of in Pyeongtae-si, one of the target cities of wind ventilation forest project. Based on the results, the direction of developing on the wind ventilation forest in Pyeongtaek-si was suggested. As a result of deriving areas vulnerable to particulate matter and thermal environment, it was most vulnerable in urban areas in the eastern area of Pyeongtaek-si. Especially, emissions were high from industrial complexes and roads such as the Pyeongtaek-si thermal power plant, ports, and the national road no. 1. The wind ventilation forest in Pyeongtaek-si was distributed with small-scale windgenerating forests, wind-spreading forests, and wind-connection forests fragmented and disconnected. The characteristic of the overall wind ventilation corridor in Pyeongtaek-si is that the cold air generated from Mt.Mubong, etc., strongly flowed into Pyeongtaek-si and flowed in the northwest direction. Therefore, it is necessary to preserve and expand the wind-generating forests in Pyeongtaek-si in the long term, and it was important to create wind-spreading forests and wind-connection forests so that cold air could flow into the vulnerable area. In addition, in industrial complexes and roads where particulate matter is generated, planting techniques should be applied to prevent the spread of particulate matte to surrounding areas by creating wind-spreading forests considering the particulate matter blocking. This study can be used not only as the basis data for wind ventilation forest project in Pyeongtaek-si, but also as the basis data for urban forest creation and management.