• 제목/요약/키워드: Urban water

검색결과 2,745건 처리시간 0.032초

토양/대수층 처리를 이용한 깨끗하고 안전한 도심하천 유지용수 확보 기술 (Application of soil aquifer treatment to secure clean and safe river water in urban watershed)

  • 김정우;차성민;최희철
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.409-411
    • /
    • 2008
  • Water conveyance from waste water treatment plant can play a role in securing river water quantitatively in urban watershed, but it can also cause more severe contamination of river water due to lack of water quality management. Soil aquifer treatment(SAT) has been introduced to overcome the worsening water quality in the water conveyance system considering the characteristics of Korean urban watershed. The application of SAT to the water conveyance system not only improve water quality of ordinarily discharged water but also prevent accidential water pollution to the urban watershed. Since most domestic urban watersheds are consist of narrow terrace lands and surrounded by roads, SAT is estimated not to be appropriate to the urban watershed with respect to the quantitative efficiency. However, since the upstream of urban watershed in which discharge ports are located usually consists of agricultural lands, SAT can be applied near discharge ports. Therefore, combination of water conveyance and SAT is expected to supply clean and safe river water in urban watershed.

  • PDF

Type Drive Analysis of Urban Water Security Factors

  • Gong, Li;Wang, Hong;Jin, Chunling;Lu, Lili;Ma, Menghan
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.784-794
    • /
    • 2020
  • In order to effectively evaluate the urban water security, the study investigates a novel system to assess factors that impact urban water security and builds an urban water poverty evaluation index system. Based on the contribution rates of Resource, Access, Capacity, Use, and Environment, the study adopts the Water Poverty Index (WPI) model to evaluate the water poverty levels of 14 cities in Gansu during 2011-2018 and uses the least variance method to evaluate water poverty space drive types. The case study results show that the water poverty space drive types of 14 cites fall into four categories. The first category is the dual factor dominant type driven by environment and resources, which includes Lanzhou, Qingyang, Jiuquan, and Jiayuguan. The second category is the three-factor dominant type driven by Access, Use, and Capability, which includes Longnan, Linxia, and Gannan. The third category is the four-factor dominant type driven by Resource, Access, Capability, and Environment, which includes Jinchang, Pingliang, Wuwei, Baiyin, and Zhangye. The fourth category is the five-factor dominant type, which includes Tianshui and Dingxi. The driven types impacting the urban water security factors reflected by the WPI and its model are clear and accurate. The divisions of the urban water security level supply a reliable theoretical and numerical basis for an urban water security early warning mechanism.

Development and application of Smart Water Cities global standards and certification schemes based on Key Performance Indicators

  • Lea Dasallas;Jung Hwan Lee;Su Hyung Jang
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.183-183
    • /
    • 2023
  • Smart water cities (SWC) are urban municipalities that utilizes modern innovations in managing and preserving the urban water cycle in the city; with the purpose of securing sustainability and improving the quality of life of the urban population. Understanding the different urban water characteristics and management strategies of cities situate a baseline in the development of evaluation scheme in determining whether the city is smart and sustainable. This research herein aims to develop measurements and evaluation for SWC Key Performance Indicators (KPIs), and set up a unified global standard and certification scheme. The assessment for SWC is performed in technical, as well as governance and prospective aspects. KPI measurements under Technical Pillar assess the cities' use of technologies in providing sufficient water supply, monitoring water quality, strengthening disaster resilience, minimizing hazard vulnerability, and maintaining and protecting the urban water ecosystem. Governance and Prospective Pillar on the other hand, evaluates the social, economic and administrative systems set in place to manage the water resources, delivering water services to different levels of society. The performance assessment is composed of a variety of procedures performed in a quantitative and qualitative manner, such as computations through established equations, interviews with authorities in charge, field survey inspections, etc. The developed SWC KPI measurements are used to evaluate the urban water management practices for Busan Eco Delta city, a Semulmeori waterfront area in Gangseo district, Busan. The evaluation and scoring process was presented and established, serving as the basis for the application of the smart water city certification all over the world. The established guideline will be used to analyze future cities, providing integrated and comprehensive information on the status of their urban water cycle, gathering new techniques and proposing solutions for smarter measures.

  • PDF

도시지역에 대한 환경용수의 계절전망 기법 개발 및 평가 (Development and Assessment of Environmental Water Seasonal Outlook Method for the Urban Area)

  • 소재민;김정배;배덕효
    • 한국물환경학회지
    • /
    • 제34권1호
    • /
    • pp.67-76
    • /
    • 2018
  • There are 34 mega-cities with a population of more than 10 million in the world. One of the highly populated cities in the world is Seoul in South Korea. Seoul receives $1,140million\;m^3/year$ for domestic water, $2million\;m^3/year$ for agricultural water and $6million\;m^3/year$ for industrial water from multi-purpose dams. The maintenance water used for water conservation, ecosystem protection and landscape preservation is $158million\;m^3/year$, which is supplied from natural precipitation. Recently, the use of the other water for preservation of water quality and ecosystem protection in urban areas is increasing. The objectives of this study is to develop the seasonal forecast method of environmental water in urban areas (Seoul, Daejeon, Gwangju, Busan) and to evaluate its predictability. In order to estimate the seasonal outlook information of environmental water from Land Surface Model (LSM), we used the observation weather data of Automated Synoptic Observing System (ASOS) sites, forecast and hind cast data of GloSea5. In the past 30 years (1985 ~ 2014), precipitation, natural runoff and Urban Environmental Water Index (UEI) were analyzed in the 4 urban areas. We calculated the seasonal outlook values of the UEI based on GloSea5 for 2015 year and compared it to UEI based on observed data. The seasonal outlook of UEI in urban areas presented high predictability in the spring, autumn and winter. Studies have depicted that the proposed UEI will be useful for evaluating urban environmental water and the predictability of UEI using GloSea5 forecast data is likely to be high in the order of autumn, winter, spring and summer.

분산형 물 인프라의 도시 하수관리 시스템 도입을 위한 기술적 발전방안 (Technical Advancements Needed for the Introduction of Distributed Water Infrastructure to Urban Wastewater Management Systems)

  • 최용주;이우람
    • 한국물환경학회지
    • /
    • 제39권1호
    • /
    • pp.76-86
    • /
    • 2023
  • We are on the verge of paradigm shift for the design and operation of our urban water systems from treatment- and efficiency-based to recirculation- and sustainability-based. One of the most frequently suggested alternatives to embody this paradigm shift is to decentralize the currently highly centralized urban water infrastructure. However, claims for water infrastructure decentralization are often criticized due to poor economic feasibility, unstable performance, and unprofessional operation and maintenance. The current study critically reviews the literature to discuss the technical advancement needs to overcome such challenges. Firstly, decentralized water infrastructure was briefly defined and the rationale for the proposal of its introduction to the next-generation urban water systems was laid down. The main discussion focused on the following water technologies, which require special attention when working with decentralized water infrastructure: i) material collection, storage, and transport; ii) easily scalable water treatment; iii) sensor, information, and communications; and iv) system optimization. The principles, current development status, and challenges were discussed for each of the water technologies. The discussion on the water technologies has enabled the identification of future research needs for their application to the next-generation urban water systems which will be designed following decentralized water infrastructure. This paper will significantly improve the current understanding on water infrastructure decentralization and provides insight on future direction of water technology development.

강우사상과 침수 실측자료를 이용한 도시침수 양상 관계분석 (Analysis of the urban flood pattern using rainfall data and measurement flood data)

  • 문혜진;조재웅;강호선;이한승;황정근
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.95-95
    • /
    • 2020
  • Urban flooding occurs in the form of internal-water inundation on roads and lowlands due to heavy rainfall. Unlike in the case of rivers, inundation in urban areas there is lacking in research on predicting and warning through measurement data. In order to analyze urban flood patterns and prevent damage, it is necessary to analyze flooding measurement data for various rainfalls. In this study, the pattern of urban flooding caused by rainfall was analyzed by utilizing the urban flooding measuring sensor, which is being test-run in the flood prone zone for urban flooding management. For analysis, 2019 rainfall data, surface water depth data, and water level data of a street inlet (storm water pipeline) were used. The analysis showed that the amount of rainfall that causes flooding in the target area was identified, and the timing of inundation varies depending on the rainfall pattern. The results of the analysis can be used as verification data for the urban inundation limit rainfall under development. In addition, by using rainfall intensity and rainfall patterns that affect the flooding, it can be used as data for establishing rainfall criteria of urban flooding and predicting that may occur in the future.

  • PDF

역사도시구조와 연계한 도시수체계의 구성형태와 역할에 관한 연구 - 경주, 개경, 한양, 수원화성을 중심으로 - (A Composition and Role of Urban Water System in Connection with Historic City Structure - Focusing on Gyeongju, Gaegyeong, Hanyang, and Suwon Hwaseong -)

  • 강인애;이경찬
    • 한국전통조경학회지
    • /
    • 제39권4호
    • /
    • pp.99-110
    • /
    • 2021
  • 본 연구는 신라왕경 경주, 고려 개경, 조선 한양, 조선후기 신도시로 조성된 수원 화성을 중심으로 우리나라의 역사도시에서 나타난 도시수체계의 구성방법이 지니는 특성을 파악해보고자하는 목적을 지니고 있다. 특히 도시입지, 도로, 도시시설 배치 등을 중심으로 도시골격구조와 연계하여 물길이 지니는 의미를 살펴보고 수체계의 구성형태에 대한 해석을 통하여 도시 내 수공간 경영에 투입되었던 기술적, 계획적 요소와 함께 도시구조와의 관계를 분석하였다. 연구대상지에서는 자연수계를 기반으로 부분적인 하천 정비와 인공수계를 도입하여 도시수체계가 구축되고 있다. 특히 물과 자연수계는 도시의 입지를 결정하는 핵심요소로 작용하고 있으며 도시구조와 도시발달과정, 도시구조와 밀접한 관계를 지니고 있음을 알 수 있다. 여기에는 지리적 관념과 어우러져 물이 지니는 상징적 의미와 더불어 치수, 이수 등의 관점에서 요구되는 현실적 수요가 중요한 배경으로 자리하고 있다. 물 공간과 관련된 다양한 수요에 대응하기 위하여 도시 형성·발달과정에서 물 공간을 경영하기 위한 다양한 계획적, 기술적 요소가 도입되었다. 연구대상지에 대한 분석을 통하여 도시형성·발달과정에서 도시수체계가 지니는 계획적 요소를 종합해보면 다음과 같이 요약된다. 첫째로 연구대상지로 선정된 신라왕경 경주, 고려 개경, 조선 한양, 수원 화성의 도시수체계를 구축하는 과정에는 배수, 재해를 고려한 치수의 관점이 공통적으로 작용하고 있지만 수체계의 구축방법이나 활용성에서는 차이를 나타내고 있다. 둘째로 물과 자연수계는 도시입지의 상징적 요소로서, 그리고 지리적 관념과 어우러진 도시 입지를 결정하고 도시의 좌향을 결정하는 핵심요소로 작용하고 있다. 셋째로 도시가 형성되기 이전의 자연수계는 지형여건과 어우러져 도시 형성·발달과정에서 구축되는 도시수체계의 구성형태를 결정하는 기반으로 작용하고 있다. 넷째로 자연수계를 기반으로 구축된 도시수체계는 자연물길과 계획적 인공수로가 결합되어 도시구조의 일부로서 위계별 수계의 활용성이 차이를 나타내고 있다. 다섯째로 도시수체계는 배수체계와 재해를 고려한 치수의 관점 이외에 도시용지의 확보, 도시시설 배치와 영역 확보, 기능지역 구성, 토지구획과 연계하여 계획적으로 구축되고 있다.

분포형 수문모형을 이용한 도시지역 옥상녹화에 따른 물 및 열순환 영향 평가 (Assessing the Effect of Water and Heat Cycle of Green Roof System using Distributed Hydrological Model in Urban Area)

  • 장철희;김현준;김연미;남미아
    • KIEAE Journal
    • /
    • 제13권4호
    • /
    • pp.33-41
    • /
    • 2013
  • The impervious area on the surface of urban area has been increased as buildings and artificial land cover have continually been increased. Urban development has gradually decreased the green zone in downtown and alienated the city from the natural environment on outskirt area devastating the natural ecosystem. There arise the environmental problems to urban area including urban heat island phenomenon, urban flood, air pollution and urban desertification. As one of urban plans to solve such problems, green roof system is attracting attentions. The purpose of this study was to investigate flood discharge and heat reduction effect according to the green roof system and to quantify effect by analyzing through simulation water and heat cycle before and after green roof system. For the analysis, Distributed hydrologic model, WEP (Water and Energy transfer Processes) and WEP+ model were used. WEP was developed by Dr. Jia, the Public Works Research Institute in Japan (Jia et al., 2005), which can simulate water and heat cycle of an urban area with complex land uses including calculation of spatial and temporal distributions of water and heat cycle components. The WEP+ is a visualization and analysis system for the WEP model developed by Korea Institute of Construction Technology (KICT).

하수처리수 재이용을 통한 도시하천 물순환 및 수질 개선 (Urban Instream Flow Augmentation Using Reclaimed Water in Korea)

  • 지용근;안종호;이진희
    • 상하수도학회지
    • /
    • 제26권2호
    • /
    • pp.285-294
    • /
    • 2012
  • Current urban stream conditions and their restoration projects were investigated by surveying the urban stream management experts in 29 cities with high population density (more than 1,000person/$km^{2}$). The survey results showed that the ratio of covered urban streams decreased by 1.4% (from 14% to 12.6%) in the last 5 years through steady river restoration projects promoted by governments. Nonetheless, 36.3% of 369 urban streams surveyed still report stream depletion problems; therefore, more efforts to alleviate the problems caused by distorted water circulation of urban streams are still necessary. Water depletion in many local urban streams, unlike national rivers, is accelerated due to negligence in stream management, budget shortage, and other reasons. To prevent stream depletion, the use of reclaimed water is suggested as one of the prevention plans. When available amounts of reused sewage are estimated through actual available nationwide sewage discharges of each watershed and instream flow of stream, annual instream flow supply of 780 million $m^{3}$ is expected; 4.8% reduction in the pollution load of public sewer treatment facilities is expected; and the creation of new value through water reuse service is expected. Thus, it is important for the reviews of feasibility and alternatives of water reuse projects for flow augmentation to consider not only investment budget reductions, but also environmental aspects. Also it is necessary to provide the financial support of unified government with strict water quality management policy.

고정밀 수문레이더 기반 스마트 도시홍수 관리시스템 개발방안 (Development Strategy of Smart Urban Flood Management System based on High-Resolution Hydrologic Radar)

  • 유완식;황의호;채효석;김대선
    • 한국지리정보학회지
    • /
    • 제21권4호
    • /
    • pp.191-201
    • /
    • 2018
  • 최근 기후변화의 영향으로 호우의 발생빈도가 증가하고 있으며, 도시지역의 호우는 돌발적이고 국지적인 특성을 가지고 있어 인명과 재산피해 역시 증가하고 있다. 도시지역에서의 국지성호우에 의한 홍수는 예고없이 빠르게 발생하고 시 공간적으로 빈번하게 발생함으로써 인명과 재산피해를 증가시킨다. 결국 도시지역의 성공적인 홍수 관리는 얼마나 빠르고, 세밀하게 관측할 수 있느냐가 관건이다. 국지성 호우는 저층에서 형성되는 강우가 지배적이며, 기존의 대형레이더는 저층 강우의 탐지 및 변동성 관측에 취약하다. 이에, 도시지역에서의 국지성 호우를 신속하게 관측하고 예측함으로써, 도시홍수 대응체계를 고도화하고 관측 및 예측 정확도를 향상시켜 도시홍수 피해를 최소화하기 위한 기존과 다른 새로운 도시홍수예보 관리시스템 구축이 필요하다. 현재 수재해 정보플랫폼 융합기술 연구단에서 고해상도 수문정보를 강우예측 및 홍수 모형과 연계하여 신개념 수재해 대응기술 확보를 목표로 추진 중에 있으며, 국지성 호우 관측을 위하여 고정밀 수문레이더를 기반으로 국지성 호우 탐지 및 예측, 도시홍수 예측 및 운영기술을 개발 중에 있다. 이 연구를 통해 도시지역에 대한 고정밀 관측이 가능함으로써 도시홍수 경보 시스템이 보다 정확하고 상세화될 것으로 기대된다.