• Title/Summary/Keyword: Urban traffic control

Search Result 160, Processing Time 0.023 seconds

Hierarchical Optimal Control of Urban Traffic Networks

  • Park, Eun-Se
    • ETRI Journal
    • /
    • v.5 no.2
    • /
    • pp.17-28
    • /
    • 1983
  • This paper deals with the problem of optimally controlling traffic flows in urban transportation traffic networks. For this, a nonlinear discrete-time model of urban traffic network is first suggested in order to handle the phenomenon of traffic flows such as oversaturatedness and/or undersaturatedness. Then an optimal control problem is formulated and a hierarchical optimization technique is applied, which is based upon a prediction-type two-level method of Hirvonen and Hakkala.

  • PDF

A Study on the Effect of Urban Freeway Traffic Control Strategies on Safety (도시고속도로 교통류 제어전략이 교통안전에 미치는 영향에 관한 연구)

  • 강정규
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.2
    • /
    • pp.223-237
    • /
    • 1996
  • Based on the traffic and accident data collected on a 4.2km (2.6mile) section of Interstate highway 35W in Minneapolis the relationship between traffic operation variables and safety measures is investigated. An aggregate specification that could be integrated into an urban freeway safety prediction methodology is proposed as a multiple regression model. The specification includes lane occupancy and volume data, which are the control parameters commonly used because they can be measured in real time. The primary variables that appear to affect the safety of urban freeway are : vehicle-miles of travel, entrance ramp volumes and the dynamic effect of queue building. The potential benefits of freeway traffic control strategies on freeway safety are also investigated via a simulation study. It was concluded that improvement of urban freeway safety is achievable by traffic control strategies which homogenize traffic conditions areound critical occupancy values.

  • PDF

Real-Time Stochastic Optimum Control of Traffic Signals

  • Lee, Hee-Hyol
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.30-44
    • /
    • 2013
  • Traffic congestion has become a serious problem with the recent exponential increase in the number of vehicles. In urban areas, almost all traffic congestion occurs at intersections. One of the ways to solve this problem is road expansion, but it is difficult to realize in urban areas because of the high cost and long construction period. In such cases, traffic signal control is a reasonable method for reducing traffic jams. In an actual situation, the traffic flow changes randomly and its randomness makes the control of traffic signals difficult. A prediction of traffic jams is, therefore, necessary and effective for reducing traffic jams. In addition, an autonomous distributed (stand-alone) point control of each traffic light individually is better than the wide and/or line control of traffic lights from the perspective of real-time control. This paper describes a stochastic optimum control of crossroads and multi-way traffic signals. First, a stochastic model of traffic flows and traffic jams is constructed by using a Bayesian network. Secondly, the probabilistic distributions of the traffic flows are estimated by using a cellular automaton, and then the probabilistic distributions of traffic jams are predicted. Thirdly, optimum traffic signals of crossroads and multi-way intersection are searched by using a modified particle swarm optimization algorithm to realize real-time traffic control. Finally, simulations are carried out to confirm the effectiveness of the real-time stochastic optimum control of traffic signals.

A Study on the RAMS Activities and Practices for assuring Safety of the Centralized Traffic Control System of Urban Railway (도시철도관제시스템 안전성 확보를 위한 RAMS 활동 및 그 적용사례에 관한 연구)

  • Choi, Yo Chul
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.43-50
    • /
    • 2014
  • The Centralized Traffic Control(CTC) System of Urban Railway is an element(subsystem) of the Urban Railway system to aim safety operation and efficient management of rolling stock in accordance with a train scheduling program in train operation ways. That's why the CTC System must be developed considering systematic and safety-guaranteed methods such as RAMS(Reliability, Availability, Maintainability, and Safety) refereed to IEC standards. The CTC System is consists of rolling stock, signaling, power supply, communication, and mechanical equipment and preforms control and remote monitoring functions. The technical activities considering safety process are very important at such an early stage of development in a railway project. This paper introduces RAMS activities and an independent safety assessment by $3^{rd}$ Party focused on a safety applied to a development of the CTC system of Urban Railway and proposes the experiences as well practices.

Fuzzy Adaptive Traffic Signal Control of Urban Traffic Network (퍼지 적응제어를 통한 도시교차로망의 교통신호제어)

  • 진현수;김성환
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.3
    • /
    • pp.127-141
    • /
    • 1996
  • This paper presents a unique approach to urban traffic network signal control. This paper begins with an introduction to traffic control in general, and then goes on to describe the approach of fuzzy control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic network condition and adjacent intersection. The signal timing parameters evolve dynamically using only local information to improve traffic signal flow. The signal timing at an intersection is defined by three parameters : cycle time, phase split, off set. Fuzzy decision rules are used to adjust three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. In this paper the effectiveness of this method is showed through simulation of the traffic signal flow in a network of controlled intersection.

  • PDF

A Study on UAM Traffic Management System Development Trends and Concept Design (UAM 교통관제시스템 개발 동향 및 설계 개념 연구)

  • Changhwan Heo;Kwangchun Kang;Heungkuen Yoon
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.81-90
    • /
    • 2023
  • In aviation, with the rapid transformation of the mobility industry, UAMs are emerging to operate green low-altitude airspace in urban environments. In order for UAM aircraft to fly safely transporting passengers and cargo in low-altitude urban airspace, a traffic control system that supports the safe operation of the aircraft is essential. In particular, traffic control systems that reflect the characteristics of the flight environment, such as operating at low altitude in urban environments for a short period of time, are required. In this study, we define the definition of UATM and its main services that perform traffic control for the safe operation of UAMs. In addition, we analyzed the development trends of UATM systems based on domestic and overseas cases. Based on these analyses, we present the results of the concept design of the UATM system. After analyzing UATM development cases, we found that there is no commercialized UATM system, but overseas development is focused on systems that can integrate ATM and UTM. And we identified key stakeholders and interface data, and performed UATM system architecture and functional design based on the identified data. Finally, as a necessary element for the future development of UATM systems, we propose the establishment and advancement of UAM traffic flow management systems, the establishment of integrated control systems, and the development of interface with aircraft operation systems in preparation for the unmanned UAM aircraft.

Measurement of Effectiveness of Signal Optimized Roundabout (회전교차로의 접근로 신호최적화를 통한 도입효과 분석)

  • Eom, Jeong Eun;Jung, Hee Jin;Bae, Sang Hoon
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.91-98
    • /
    • 2015
  • PURPOSES : Although signalized intersections have been considered the best way to control traffic volume in urban areas for several decades, roundabouts are currently being discussed as an alternative way to control traffic volume, especially when traffic is light. Because a roundabout's efficiency depends on the load geometry as well as the traffic volume, design guidelines for roundabouts are recommended only if the incoming traffic volume is very low. It is rare to substitute a roundabout for an existing signalized intersection in urban areas. This study aims to estimate the benefits from the transformation of an existing signalized intersection into a roundabout in an urban area. When there is a more moderate volume of traffic, roundabouts can be effectively used by optimizing signals located at an approaching roadway. METHODS : The methodologies of this paper are as follows: First, a signalized intersection was analyzed to determine the traffic characteristics. Second, the signalized intersection was transformed into a roundabout using VISSIM microscopic traffic simulation. Then, we estimated and analyzed the effects and the performance of the roundabout. In addition, we adjusted a method to improve the benefits of the transformation via the optimization of signals located at an approaching road to control the incoming traffic volume. RESULTS : The results of this research are as follows: The signal-optimized roundabout improved delays compared with the signalized intersection during the morning peak hour, non-peak hour, and evening peak hour by 1.78%, 12.45%, and 12.72%, respectively. CONCLUSIONS : According to the simulation results of each scenarios, the signal-optimized roundabout had less delay time than the signalized intersection. If optimized signal control algorithms are installed in roundabouts in the future, this will lead to more efficient traffic management.

Road Traffic Noise in Tunnel (터널 내부의 도로교통소음)

  • 여운호;유명진
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.9-13
    • /
    • 1993
  • This paper describes the impact of reflected sound in tunnel. The impact of reflected sound is obtained from making a comparision between measurements of tunnel and bridge. Sound level of tunnel is higher than that of bridge because reflected sound is generated in tunnel. Road traffic noise cannot be freely propagated because there are many buildings in urban. Therefore, a tunnel effect is generated in urban road. The impact of reflected sound is generated not only in tunnel, but also in urban road. This study provides the basic data for tunneling work and noise control strategy in urban road.

  • PDF

Human Driving Data Based Simulation Tool to Develop and Evaluate Automated Driving Systems' Lane Change Algorithm in Urban Congested Traffic (도심 정체 상황에서의 자율주행 차선 변경 알고리즘 개발 및 평가를 위한 실도로 데이터 기반 시뮬레이션 환경 개발)

  • Dabin Seo;Heungseok Chae;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.21-27
    • /
    • 2023
  • This paper presents a simulation tool for developing and evaluating automated driving systems' lane change algorithm in urban congested traffic. The behavior of surrounding vehicles was modeled based on driver driving data measured in urban congested traffic. Surrounding vehicles are divided into aggressive vehicles and non-aggressive vehicles. The degree of aggressiveness is determined according to the lateral position to initiate interaction with the vehicle in the next lane. In addition, the desired velocity and desired time gap of each vehicle are all randomly assigned. The simulation was conducted by reflecting the cognitive limitations and control performance of the autonomous vehicle. It was possible to confirm the change in the lane change performance according to the variation of the lane change decision algorithm.

A Overview and Effectiveness of the Computer Controlled Traffic Signal system at Seoul (대도시 신호관제시스템의 효과)

  • 박병소
    • Journal of Korean Society of Transportation
    • /
    • v.1 no.1
    • /
    • pp.10-27
    • /
    • 1983
  • In order to improve the traffic enviroments in the urban streets of Seoul, the computer controlled traffic signal system was installed on 45 intersections at 1980. Afterward, yearly expansion was done to the numbers of 132 intersections and 232 loop detectors. The problems of timing plans were discussed, mainly pedestrian crossing timing as well as the generations of split and offset. The broad urban streets more than 30m require long phasing time of pedestrians, even though the equivalent or correspondent traffic volume is rare. The configuration of computer system for traffic control was disscussed in terms of control strategy. An overview also given. The improvements were measured at every quater. The travel speed improved to 42%, delay time reduced to 41% and number of stops to 43% respectively.

  • PDF