• 제목/요약/키워드: Urban soils

검색결과 167건 처리시간 0.025초

Environmental contamination and geochemical behaviour of heavy metals around the abandoned Songcheon Au-Ag mine, Korea

  • Lim Hye-sook;Lee Jin-Soo;Chon Hyo-Teak;Sager Manfred
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.544-547
    • /
    • 2003
  • The objective of this study is to investigate the contamination levels and dispersion patterns of arsenic and heavy metals and to estimate the bioaccessible fraction of the metals in soil and plant samples in the vicinity of the abandoned Songcheon Au-Ag mine. Tailings, soils, plants (Chinese cabbage, red pepper, soybean, radish, sesame leaves, green onion, lettuce, potato leaves, angelica and groundsel) and waters were collected around the mine site. After appropriate preparation, all samples were analyzed for As, Cd, Cu, Pb and Zn by ICP-AES and ICP-MS. Elevated levels of As and heavy metals were found in tailings. Mean concentrations of As in agricultural soils were higher than the permissible level. Especially, maximum level of As in farmland soil was 513 mg/kg. The highest concentrations of As and Zn were found in Chinese cabbage (6.7 mg/kg and 359 mg/kg, respectively). Concentrations of As, Cd, and Zn in most stream waters which are used for drinking water around this mine area were higher than the permissible levels regulated in Korea. Maximum levels of As, Cd and Zn in stream waters were 0.78 mg/L, 0.19 mg/L and 5.4 mg/L, respectively. These results indicate that mine tailings can be the main contamination sources of As and heavy metals in the soil-water system in the mine area. The average of estimated bioaccessible fraction of As in farmland soils were $3.7\%$ (in simulated stomach) and $10.8\%$ (in simulated small intestine). The highest value of bioaccessible fraction of metal in farmland soils was $46.5\%$ for Cd.

  • PDF

Effects of Microbial Iron Reduction and Oxidation on the Immobilization and Mobilization of Copper in Synthesized Fe(III) Minerals and Fe-Rich Soils

  • Hu, Chaohua;Zhang, Youchi;Zhang, Lei;Luo, Wensui
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권4호
    • /
    • pp.534-544
    • /
    • 2014
  • The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, $SO_4{^{2-}}$ in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cu-contaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

양생방법이 고결모래의 압축강도에 미치는 영향 (Influence of different curing methods on the compressive strength of cemented sand)

  • 박성식;김기영;최현석;김창우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.463-471
    • /
    • 2009
  • Cemented soils or concrete are usually cured under moisture conditions and their strength increases with curing time. An insufficient supply of water to cemented soils can contribute to hydration process during curing, which results in the variation of bonding strength of cemented soils. In this study, by the consideration of in situ water supply conditions, cemented sand with cement ratio less than 20% was prepared by air dry, wrapped, and underwater conditions. A series of unconfined compression tests were carried out to evaluate the effect of curing conditions on the strength of cemented soils. The strength of air dry curing specimen was higher than those of wrapped cured specimen when cement ratio was less than 10%, whereas it was lower when cement ratio was greater than 10%. Regardless of cement ratio, air dry cured specimens were stronger than underwater cured specimens. A strength increase ratio with cement ratio was calculated based on the strength of 4% cemented specimen. The strength increase ratio of air dry cured specimen was lowest and that of wrapped and underwater cured ones increased by square. Strength of air dry cured specimen dropped to maximum 30% after wetting when cement ratio was low. However, regardless of cement ratio, strength of wrapped specimens dropped to an average 10% after wetting.

  • PDF

뒤채움지반에서의 과잉간극수압 발생이 중력식 안벽구조물의 동적특성에 미치는 영향 분석 (Dynamic Characteristics of Gravity Quay Wall during Generation of Excess Pore Pressure in Backfill Soils)

  • 황재익;김명모
    • 한국지반공학회논문집
    • /
    • 제21권1호
    • /
    • pp.123-131
    • /
    • 2005
  • 본 연구에서는 세 종류의 안벽시스템에 대해 랜덤파를 이용한 진동대 실험을 수행하여 진동 중 뒤채움지반에서 발생하는 과잉간극수압이 중력식 안벽구조물 시스템의 고유진동수에 미치는 영향을 분석하였다. 또한 진동대 실험결과를 이용한 역해석을 통하여 과잉간극수압의 크기에 따른 뒤채움지반의 탄성계수를 추정하였다. 그 결과, 뒤채움지반에서 과잉간극수압이 증가하면 안벽시스템의 고유진동수는 감소하고 과잉간극수압이 감소하면 고유진동수가 증가하는 경향을 보였으며, 안벽시스템의 고유진동수는 뒤채움지반에서 과잉간극수압이 발생하지 않을 때 약 44Hz이었으며 간극수압비가 0.55일 때 약 16Hz까지 감소하였다. 또한 뒤채움지반의 탄성계수는 간극수압비가 약 0.2이하에서는 최대값으로 거의 일정하지만 간극수압비가 약 0.2이상으로 증가하면 급격히 감소하여 간극수압비가 0.55일 때 간극수압비가 0일 때의 탄성계수의 약 $10\%$까지 감소하였다.

액상화된 지반의 점성 유체 특성과 그 흐름이 말뚝의 거동에 미치는 영향 분석 (Viscous fluid characteristics of liquefied soils and behavior of pile subjected to flow of liquefied soils)

  • 황재익;김창엽;정충기;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.722-729
    • /
    • 2004
  • The horizontal movement of sloping ground due to flow liquefaction has caused many pile foundations to fail, especially those in ports and harbor structures. In this study, a virtual case is assumed in which flow liquefaction is induced by earthquake loads in a fully saturated infinite sand slope with a single pile installation. Under the assumption that the movement of liquefied ground is viscous fluid flow, the influence of ground movement due to flow liquefaction on the pile behavior was analyzed. Since the liquefied soil is assumed as a viscous fluid, its viscosity must be evaluated, and the viscosity was estimated by the dropping ball method ,md the pulling bar method. Finally, the influence of the flow of liquefied soil on a single pile installed in an infinite slope was analyzed by a numerical method.

  • PDF

Seismic fragility assessments of fill slopes in South Korea using finite element simulations

  • Dung T.P. Tran;Youngkyu Cho;Hwanwoo Seo;Byungmin Kim
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.341-380
    • /
    • 2023
  • This study evaluates the seismic fragilities in fill slopes in South Korea through parametric finite element analyses that have been barely investigated thus far. We consider three slope geometries for a slope of height 10 m and three slope angles, and two soil types, namely frictional and frictionless, associated with two soil states, loose and dense for frictional soils and soft and stiff for frictionless soils. The input ground motions accounting for four site conditions in South Korea are obtained from one-dimensional site response analyses. By comparing the numerical modeling of slopes using PLAXIS2D against the previous studies, we compiled suites of the maximum permanent slope displacement (Dmax) against two ground motion parameters, namely, peak ground acceleration (PGA) and Arias Intensity (IA). A probabilistic seismic demand model is adopted to compute the probabilities of exceeding three limit states (minor, moderate, and extensive). We propose multiple seismic fragility curves as functions of a single ground motion parameter and numerous seismic fragility surfaces as functions of two ground motion parameters. The results show that soil type, slope angle, and input ground motion influence these probabilities, and are expected to help regional authorities and engineers assess the seismic fragility of fill slopes in the road systems in South Korea.

중부 지역 도시 자연녹지 토양중 $NO_3\;^-,\;SO_4\;^{2-}$ 및 중금속 분포 (Distribution of $NO_3\;^-,\;SO_4\;^{2-}$ and Heavy Metals in Some Urban-forest Soils of Central Korea)

  • 김계훈;박순남
    • 한국환경농학회지
    • /
    • 제19권4호
    • /
    • pp.351-357
    • /
    • 2000
  • 본 연구는 도시자연녹지토양의 오염여부와 특성을 구명하기 위해 강원도 오대산을 대조구로 하여 남산, 창덕궁 후원 및 부천 성주산의 도시자연녹지 토양의 대기오염물질과 중금속 및 이화학적 성분을 비교${\cdot}$분석하였다. 토양 pH는 표토, 심토 모두 오대산>남산>창덕궁>성주산 순으로 나타났으며 대기오염물질인 음이온 $(NO_3\;^-,\;SO_4\;^{2-})$ 함량은 남산, 성주산>창덕궁>오대산 순으로 나타났다. pH와 대기오염물질과의 상관관계를 분석해본 결과 강한 부의상관을 보여 대기오염물질에 의한 토양산성화가 진행되고 있음을 보였다. 토양산성화에 따른 양이온 용탈 정도는 크게 나타나지 않았으나 계속 진행될 것으로 보인다. 남산, 부천 성주산, 창덕궁 후원 도시자연녹지 토양의 중금속 함량은 오대산에 비해 높게 나타났으며 표토가 심토에 비해 집적이 심하였다. 따라서 도시자연녹지 토양은 자동차 배기가스 등의 대기오염물질의 만성적인 노출로 토양산성화와 중금속 축적 등에 의한 산림생태계 악화가 우려된다.

  • PDF

충적토사지반에서의 도심터널 설계 및 시공 (Design and Construction Case of Urban Tunnel in Alluvial Soil)

  • 장석부;허도학;문상조;김도수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.829-834
    • /
    • 2009
  • Alluvial soil is one of the most difficult grounds for tunneling works due to the insufficient ground strength and excessive ground water inflow. Dduk island in Seoul has a wide alluvium developed by two rivers, Han and Jung-Ryang. Subway tunnel of $\bigcirc\bigcirc$ line planed across Dduk island has highly poor ground conditions due to small cover and deeply developed alluvium. Moreover, much part of this tunnel is located parallel to the bridge foundations of another railway with a small horizontal distance. Original design was done in 2002 and construction has been in progress. During the construction, tunnel design has been partly changed and adjusted for the complex ground condition and the demand from related organizations. This paper intend to introduce the urban tunnel design and construction in alluvial soils. This line could be divided three sections(A, B, C) according to ground and adjacent conditions. Section A is featured by mixed tunnel faces consisted with alluvial soils and weathered or weak rocks. The feature of section B is that tunnel underpasses near the bridge foundations of another subway. Lastly, section C with a very short length is the most difficult construction conditions due to the small cover, poor ground, obstacles on and underneath ground surface.

  • PDF

Urban Thermo-profiles and Community Structure of Quercus mongolica Forests along an Urban-rural Land Use Gradient: Implications for Management and Restoration of Urban Ecosystems

  • Cho, Yong-Chan;Cho, Hyun-Je;Lee, Chang-Seok
    • Journal of Ecology and Environment
    • /
    • 제32권3호
    • /
    • pp.167-176
    • /
    • 2009
  • Land cover changes associated with urbanization have driven climate change and pollution, which alter properties of ecosystems at local, regional, and continental scales. Thus, the relationships among urban ecological variables such as community composition, structure, health, soil and functioning need to be better understood to restore and improve urban ecosystems. In this study, we discuss urban ecosystem management and research from a futuristic perspective based on analyses of vegetation structure, composition, and successional trends, as well as the chemical properties of soils and the distribution of heat along an urban-rural gradient. Urban thermo-profile analysis using satellite images showed an obvious mitigating effect of vegetation on the Seoul heat island. Community attributes of Quercus mongolica stands reflected the effects of urbanization, such as pronounced increases in disturbance-related and pollution-tolerant species, such as Styrax japonica and Sorbus alnifolia. Retrogressive successional trends were detected in urban sites relative to those in rural sites. Changes in the urban climate and biotic environment have the potential to significantly influence the practice and outcomes of ecological management, restoration and forecasting because of the associated changes in future bio-physical settings. Thus, for management (i.e., creation and restoration) of urban green spaces, forward-thinking perspectives supported by historical information are necessary.