• Title/Summary/Keyword: Urban road transportation network

Search Result 71, Processing Time 0.022 seconds

An Extensive View on the Highway Network in North Korea and the Determination of Investment Priority Using AHP Analysis (북한의 고속도로 전망 및 AHP기법을 활용한 투자우선순위 결정)

  • Man, Seol-Young;Cho, Yun-Ho
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.171-182
    • /
    • 2011
  • Current state of population, the existing roads, and the function of roads and highways of North Korea have been reviewed in this paper. In addition, the 'Five by five' road network has proposed for North-South and East-West directions to be connected with the road network of South Korea, China, and Asian Highways. Furthermore, the evaluation criteria and weighted values have suggested to determine the investment priority of highway based on the survey results from expert group members using AHP analysis method. Throughout the analysis, the ranking of the investment priority has been decided for the North-South axis and East-West axis. The second North-South axis (Geasung-Pyungyang-Anju-China) has been ranked as the first priority for the North-South axis followed by the fifth North-South axis as the second, the first axis as the third, the third axis as the fourth and the fourth axis as the last priority. For the East-West axis, the second East-West axis(Nampo-Pyungyang-Wonsan) has been ranked as the first priority followed by the first axis as the second, the third axis as the third, the fourth axis as the fourth and the fifth East-West axis as the last priority.

A sutdy on the District Unit Design for CO2 Reduction of Transportation (교통부문 CO2 저감을 위한 지구단위설계 방법에 관한 연구)

  • Jin, Jang-Won;Park, Min-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1370-1376
    • /
    • 2012
  • This study tried to analyze $CO_2$ emission volume as green-house gases by application of land use patterns and transport policies in District Unit Design. It is postulated a Toy network and various scenarios which are combined land use patterns and transport policies for analyzing $CO_2$ gas reduction. As results, this study shows best District Unit Design technique is the policy that develop mid block and introduction of car free zone to inner 2 way streets. Worst design technique is the policy that make hierarchical network and introduction of access control to outer roads that have been known as a best road policy till nowadays. Therefore, we need more carefully introduce design technique for reduction of $CO_2$ in District Unit.

Impacts of Land Use and Urban Design Characteristics on Transit Ridership in the Seoul Rail Station Areas (서울시 역세권에서의 토지이용 및 도시설계특성이 대중교통이용증대에 미치는 영향 분석)

  • Sung, Hyung-Gon;Kim, Dong-Jun;Park, Jee-Hyung
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.135-147
    • /
    • 2008
  • One of the efforts both to prevent urban sprawling development patterns and to promote use of public transportation is known as Transit-Oriented Development (TOD), including such planning elements as the density and diversity of land use and pedestrian-friendly urban design around a transit center. The aim of this study is thus to conduct impact analyses of TOD planning elements on transit ridership in the Seoul rail station areas. First, the authors investigate and draw out various actual elements of TOD planning by using GIS-based data and Smart Card data. Then the authors analyze impacts of TOD planning elements on transit ridership for the Seoul rail station areas. After condensing 34 variables presumably influencing transit ridership into seven factors by using factor analyses, the study utilizes multiple regression modeling methods to identify their impacts on transit ridership. The analysis results demonstrate that transit ridership tends to increase more in rail station areas where there is a non-residential high density, mixed use of land and narrow and small-size road network patterns. The implementation of TODs should be a useful method in inducing a Transit-Oriented City through redevelopment and new development.

A Comparative Study On Accident Prediction Model Using Nonlinear Regression And Artificial Neural Network, Structural Equation for Rural 4-Legged Intersection (비선형 회귀분석, 인공신경망, 구조방정식을 이용한 지방부 4지 신호교차로 교통사고 예측모형 성능 비교 연구)

  • Oh, Ju Taek;Yun, Ilsoo;Hwang, Jeong Won;Han, Eum
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.3
    • /
    • pp.266-279
    • /
    • 2014
  • For the evaluation of roadway safety, diverse methods, including before-after studies, simple comparison using historic traffic accident data, methods based on experts' opinion or literature, have been applied. Especially, many research efforts have developed traffic accident prediction models in order to identify critical elements causing accidents and evaluate the level of safety. A traffic accident prediction model must secure predictability and transferability. By acquiring the predictability, the model can increase the accuracy in predicting the frequency of accidents qualitatively and quantitatively. By guaranteeing the transferability, the model can be used for other locations with acceptable accuracy. To this end, traffic accident prediction models using non-linear regression, artificial neural network, and structural equation were developed in this study. The predictability and transferability of three models were compared using a model development data set collected from 90 signalized intersections and a model validation data set from other 33 signalized intersections based on mean absolute deviation and mean squared prediction error. As a result of the comparison using the model development data set, the artificial neural network showed the highest predictability. However, the non-linear regression model was found out to be most appropriate in the comparison using the model validation data set. Conclusively, the artificial neural network has a strong ability in representing the relationship between the frequency of traffic accidents and traffic and road design elements. However, the predictability of the artificial neural network significantly decreased when the artificial neural network was applied to a new data which was not used in the model developing.

Analysis of Contributory Factors in Causing Crashes at Rural Unsignalized intersections Based on Statistical Modeling (지방부 무신호교차로 교통사고의 영향요인 분석 및 통계적 모형 개발)

  • PARK, Jeong Soon;OH, Ju Taek;OH, Sang Jin;KIM, Young Jun
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.2
    • /
    • pp.123-134
    • /
    • 2016
  • Traffic accident at intersections takes 44.3% of total number of accidents on entire road network of Korea in 2014. Although several studies addressed contributory factors of accidents at signalized intersection, very few is known about the factors at rural unsignalized intersections. The objective of this study is therefore to investigate specific characteristics of crashes at rural unsignalized intersection and to identify contributory factors in causing crashes by statistical approach using the Ordered Logistic Regression Model. The results show that main type of car crashes at unsignalized intersection during the daytime is T-bone crashes and the number of crashes at 4-legged intersections are 1.53 times more than that at 3-legged intersections. Most collisions are caused by negligence of drivers and violation of Right of Way. Based upon the analysis, accident severity is modeled as classified by two types such as 3-legged intersection and 4-legged intersection. It shows that contributory factors in causing crashes at rural unsignalized intersections are poor sight distance problem, average daily traffic, time of day(night, or day), angle of intersection, ratio of heavy vehicles, number of traffic violations at intersection, and number of lanes on minor street.

An Analysis of the Effectiveness of Social Path Using the Space Syntax Technique (Space syntax 기법을 활용한 Social Path 효과분석)

  • Choi, Sung Taek;Lee, Hyang Sook;Choo, Sang Ho;Jang, Jin Young;Kim, Su Jae
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.2
    • /
    • pp.192-203
    • /
    • 2015
  • Pedestrians not only walk along pedestrian pathways, but also choose unusual routes such as passing through buildings or crossing large scale open spaces. This study defines these unusual paths as social path, and includes them into one of the pedestrian road categories. Previous pedestrian accessibility and route choice studies could not evaluate correctly the space connectivity or optimal route because the social path was not considered properly. Therefore, this study analyzes the effectiveness of the social path in view of space connectivity focused on Coex and Seoul stations in Seoul, which are representative transit oriented development(TOD) areas. Global integration, which is widely used in network analysis, is selected (as performance index) to identify the space hierarchy and define new pedestrian links. The study results show that the network connectivity is improved especially in the main streets and social paths. This study demonstrated that the social path should be considered in finding the pedestrian optimal route from the practical perspective.

The Study for Estimating Traffic Volumes on Urban Roads Using Spatial Statistic and Navigation Data (공간통계기법과 내비게이션 자료를 활용한 도시부 도로 교통량 추정연구)

  • HONG, Dahee;KIM, Jinho;JANG, Doogik;LEE, Taewoo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.3
    • /
    • pp.220-233
    • /
    • 2017
  • Traffic volumes are fundamental data widely used in various traffic analysis, such as origin-and-destination establishment, total traveled kilometer distance calculation, congestion evaluation, and so on. The low number of links collecting the traffic-volume data in a large urban highway network has weakened the quality of the analyses in practice. This study proposes a method to estimate the traffic volume data on a highway link where no collection device is available by introducing a spatial statistic technique with (1) the traffic-volume data from TOPIS, and National Transport Information Center in the Ministry of Land, Infrastructure, and (2) the navigation data from private navigation. Two different component models were prepared for the interrupted and the uninterrupted flows respectively, due to their different traffic-flow characteristics: the piecewise constant function and the regression kriging. The comparison of the traffic volumes estimated by the proposed method against the ones counted in the field showed that the level of error includes 6.26% in MAPE and 5,410 in RMSE, and thus the prediction error is 20.3% in MAPE.

Preliminary Study Related with Application of Transportation Survey and Analysis by Unmanned Aerial Vehicle(Drone) (드론기반 고속도로 교통조사분석 활용을 위한 기초연구)

  • Kim, Soo-Hee;Lee, Jae-Kwang;Han, Dong-Hee;Yoon, Jae-Yong;Jeong, So-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.182-194
    • /
    • 2017
  • Most of the drone (Unmanned Aerial Vehicle) research in terms of traffic management involves detecting and tracking roads or vehicles. The purpose of analyzing image footage in the transportation sector is to overcome the limitations of the existing traffic data collection system (vehicle detectors, DSRC, etc.). With regards to this, drones are the good alternatives. However, due to limitation in their maximum flight time, they are appropriate to use as a complementary rather than replacing the existing collection system. Therefore, further research is needed for utilizing drones for transportation analysis purpose. Traffic problems often arise from one particular section or a point that expands to the whole road network and drones can be fully utilized to analyze these particular sections. Based on the study on the uses of traffic survey analysis, this study is conducted by extracting traffic flow parameters from video images(range 800~1000m) of highway unit segments that were taken by drones. In addition, video images were taken at a high altitude with the development of imaging technologies.

A Road Environment Analysis for the Introduction of Connected and Automated Driving-based Mobility Services from an Operational Design Domain Perspective (자율주행기반 모빌리티 서비스 도입을 위한 운행설계영역 관점의 도로환경 분석)

  • Bo-Ram, WOO;Ah-Reum, KIM;Yong-Jun, AHN;Se-Hyun, TAK
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.107-118
    • /
    • 2022
  • As connected and automated driving(CAD) technology is entering its commercialization stage, service platforms providing CAD-based mobility services have increased these days. However, CAD-baded mobility services with these platforms need more consideration for the demand for mobility services when determining target areas for CAD-based mobility services because current CAB-based mobility design focus on driving performance and driving stability. For a more efficient design of CAD-based mobility services, we analyzed the applicability for the introduction of CAD-based mobility services in terms of driving difficulty of CAD and demand patterns of current non-CAD based-mobility services, e.g., taxi, demand-responsive transit(DRT), and special transportation systems(STS). In addition, for the spatial analysis of the applicability of the CAD-based mobility service, we propose the Index for Autonomous Driving Applicability (IADA) and analyze the characteristics of the spatial distribution of IADA from the network perspective. The analysis results show that the applicability of CAD-based mobility services depends more on the demand patterns than the driving difficulty of CAV. In particular, the results show that the concentration pattern of demand in a specific road link is more important than the size of demand. As a result, STS service shows higher applicability compared to other mobility services, even though the size of demand for this mobility service is relatively small.

Novel online routing algorithms for smart people-parcel taxi sharing services

  • Van, Son Nguyen;Hong, Nhan Vu Thi;Quang, Dung Pham;Xuan, Hoai Nguyen;Babaki, Behrouz;Dries, Anton
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.220-231
    • /
    • 2022
  • Building smart transportation services in urban cities has become a worldwide problem owing to the rapidly increasing global population and the development of Internet-of-Things applications. Traffic congestion and environmental concerns can be alleviated by sharing mobility, which reduces the number of vehicles on the road network. The taxi-parcel sharing problem has been considered as an efficient planning model for people and goods flows. In this paper, we enhance the functionality of a current people-parcel taxi sharing model. The adapted model analyzes the historical request data and predicts the current service demands. We then propose two novel online routing algorithms that construct optimal routes in real-time. The objectives are to maximize (as far as possible) both the parcel delivery requests and ride requests while minimizing the idle time and travel distance of the taxis. The proposed online routing algorithms are evaluated on instances adapted from real Cabspotting datasets. After implementing our routing algorithms, the total idle travel distance per day was 9.64% to 12.76% lower than that of the existing taxi-parcel sharing method. Our online routing algorithms can be incorporated into an efficient smart shared taxi system.