• Title/Summary/Keyword: Urban radiation

Search Result 185, Processing Time 0.026 seconds

Analysis of Radiative Characteristics at Urban Area by Observation in Summer Season (하절기 도시의 지역별 장.단파복사 특성 분석과 해석)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.133-144
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of radiation environment in the urban and rural through the field observation in the summer. The radiation balance was compared through the measurement of the shortwave radiation and long-wave radiation in the urban, sub-urban, and rural. The following conclusion could be obtained from this research. (1)In the results of observation including the rain-day, it was found that the short wave radiance in the urban is lower about 10% than the rural. (2)The upper part of atmosphere layers in the urban are aabsorb much short wave radiation energies compared with the rural relatively. It can increase the temperature of the upper part of atmosphere layers and the emittance of long wave radiation. (3)The ratio of the downward short wave radiation to the downward long wave radiation was 1.24 for the urban, 1.28 for sub-urban and 1.35 for rural. It can be estimated that the atmosphere condition of the rural is better than that of other areas. (4)The net radiation of the rural was lower that of the urban. It was found that the energy in and outflow of the rural is easier than that of the urban. (5)The temperature variation for the long-wave radiation change of the rural showed more sensitive than that of the urban. It was came from the radiation characteristics of the surrounding environment and can be used as the important index to evaluate the thermal environment characteristic of urban.

Study on Characteristics of Radiation Environment in the Urban through the Field Observation in the Summer (하절기 도시의 장.단파 복사특성 관측)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.105-110
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of radiation environment in the urban and rural through the field observation in the summer. The radiation balance was compared through the measurement of the shortwave radiation and long-wave radiation in the urban, sub-urban, and rural. The following conclusion could be obtained from this research. (1) In the results of observation including the rain-day, it was found that the short wave radiance in the urban is lower about 10% than the rural. (2) The upper part of atmosphere layers in the urban area absorb much short wave radiation energies compared with the rural relatively. It can increase the temperature of the upper part of atmosphere layers and the emittance of long wave radiation. (3) The ratio of the downward short wave radiation to the downward long wave radiation was 1.24 for the urban, 1.28 for sub-urban and1.35 for rural. It can be estimated that the atmosphere condition of the rural is better than that of other areas.

  • PDF

Estimating the urban radiation heat flux distribution and the reduction effect of building and tree shade (건물과 수목의 그림자에 의한 도시의 열 분포 산정 및 저감효과 연구)

  • Park, Chae-Yeon;Lee, Dong-Kun;Yoon, June-Ha
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.6
    • /
    • pp.1-13
    • /
    • 2018
  • Mapping radiation heat flux of urban area is essential for urban design and landscape planning. Because controlling urban geometry and generating green space are important urban design strategies for reducing urban heat, urban planner and designer need to recognize the micro urban heat distribution for adequate urban planning. This study suggests a new methodology for mapping urban radiation heat flux in a micro scale considering buildings and trees' shade. For doing that, firstly, we calculate net radiation for each urban surfaces (building, road (not shaded, building shaded, tree shaded), ground (not shaded, building shaded, tree shaded), tree (not shaded, building shaded)). Then, by multiplying the area ratio of surfaces to the net radiation, we can obtain the radiation heat flux in micro-scale. The estimated net radiation results were found to be robust with a $R^2$ of 90%, which indicates a strong explanatory power of the model. The radiation heat flux map for 12h $17^{th}$ August explains that areas under the building and tree have lower net radiation heat flux, indicating that shading is a good strategy for reducing incident radiation. This method can be used for developing thermal friendly urban plan.

Observation and Analysis of the Long and Short Wave Radiation According to Different Altitudes and Locations in Daegu During Summer (대구지역의 고도와 위치에 따른 하절기 장·단파복사 관측과 해석)

  • Choi, Dong-Ho;Lee, Bu-Yong;Oh, Ho-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.71-81
    • /
    • 2012
  • This study for the understanding of the radiation environment according to the altitude in urban area in the summer observes the long and short wave radiation environment at the 4 urban areas with different height and the 1 suburban area. The results of this study are as follows. (1) When the altitude was high, the more short wave radiation was observed. (2) As the altitude was high, the temperature of atmosphere got lower. And because of that the downward long wave radiation was also lower. This general trend was confirmed through the study. (3) Through the observation of long wave radiation, the upper atmosphere of suburban area had the atmosphere characteristic which the temperature was rising and decreasing faster. Therefore, the difference radiation characteristics between the urban and suburban area were confirmed. (4) The result of the ratio of short wave radiation to long wave radiation(short wave radiation/long wave radiation) according to the altitude and location, the value was increased when the distance was far from the artificiality structure or a heat source, and the urban effect became smaller. Thus, it is expected that the ratio will be an evaluation index for evaluating urbanization effect.

Analysis of Cloudiness and Radiation Characteristics during Summer in the Greater Daegu Area (대구지역의 하절기 운량과 장·단파 복사 특성 분석)

  • Baek, Chang-Hyeon;Choi, Dong-Ho;Lee, Bu-Yong;Lee, In-Gyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.4
    • /
    • pp.13-22
    • /
    • 2017
  • In this study, long and short-wave radiations were observed in urban and suburban areas during the summer season, and frequency analysis was performed for each radiation intensity by a new analysis method. The following results were obtained. (1) Long-wave radiation values were found to be larger in the afternoon than in the morning, in both urban and suburban areas, unlike short-wave radiation values. (2) Short-wave radiation showed a right-skewed frequency distribution. In the high energy area greater than $900W/m^2$, the frequency was significantly higher in the suburbs than in the urban areas. (3) Long-wave radiation was in the range of $290{\sim}479W/m^2$, its frequency distribution resembled a normal distribution, and the frequency of 410, $420W/m^2$ was the highest.

Performance Comparison of an Urban Canopy Model under Different Meteorological Conditions (기상 조건에 따른 도시 캐노피 모형의 성능 비교)

  • Ryu, Young-Hee;Baik, Jong-Jin;Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.429-436
    • /
    • 2012
  • The performances of the Seoul National University Urban Canopy Model (SNUUCM) under different meteorological conditions (clear, cloudy, and rainy conditions) in summertime are compared using observation dataset obtained at an urban site. The daily-averaged net radiation, sensible heat flux, and storage heat flux are largest in clear days and smallest in rainy days, but the daily-averaged latent heat flux is similar among clear, cloudy, and rainy days. That is, the ratio of latent heat flux to net radiation increases in order of clear, cloudy, and rainy conditions. In general, the performance of the SNUUCM is better in clear days than in cloudy or rainy days. However, the performance in simulating sensible heat flux in clear days is as poor as that in rainy days. For all the meteorological conditions, the performance in simulating latent heat flux is worst among the performances in simulating net radiation, sensible heat flux, and latent heat flux. The normalized mean error for latent heat flux is largest in rainy days in which the relative importance of latent heat flux in the surface energy balance becomes greatest among the three conditions. This study suggests that improvements to the parameterization of processes that are related to latent heat flux are particularly needed.

Characteristics of Meteorological Elements and Long-wave Radiation in the Greater Daegu Area During Winter (동절기 대구지역의 기상요소와 장파복사 특성 분석)

  • Baek, Chang-Hyeon;Choi, Dong-Ho;Lee, Bu-Yong;Lee, In-Gyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.93-102
    • /
    • 2017
  • Interpretation of relevance between long-wave radiation and meteorological elements is recognized as an essential element for understanding the underlying mechanism of urban thermal environment formation. In this study, we analyzed relation between three elements : long-wave radiation, temperature, and lower-middle class cloudiness. The correlation was analyzed through field observations. The results are as follows. (1) Temperatures and long-wave radiation increased from January to March. This phenomenon has been confirmed in urban and suburban areas. (2) Long-wave radiations showed a tendency to increase clearly with increasing cloudiness.

Observation of Long and Short Wave Radiation During Summer Season in Daegu Area (대구지역의 하절기 장.단파복사 관측)

  • Oh, Ho-Yeop;Choi, Dong-Ho;Lee, Bu-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.134-139
    • /
    • 2012
  • This study observed downward long and short-wave radiant environment with selecting 4 areas which have different height in downtown and 1 suburban area to figure out the characteristic of radiant environment in each altitude. The purpose of this study is to collect the preliminary data for interpreting urban thermal environment in summer season by analyzing thermal characteristic of atmosphere in the upper of downtown. The results of this study are as follows. 1) The higher altitude has the lower temperature, and temperature difference was more huge in day time than night time. 2) The short wave radiation according to altitude was higher as altitude was high. 3) Generally, the higher altitude has the lower air temperature, and also the higher altitude has the lower downward long wave radiation by the atmospheric radiation. 4) The ratio short wave radiation of long wave radiation was lower as altitude was high. And the urbanization effect was higher as the ratio was low.

  • PDF

Observation and Analysis of Radiation Characteristics According to the Type of City During the Summer Season - Focus on the Daegu Metropolitan City and the Surrounding Four Regions - (하절기 도시 유형별 복사특성 관측과 분석 -대구광역시와 인근 4개 지역을 중심으로-)

  • Choi, Dong-Ho;Lee, Bu-Yong;Jeong, Hyeong-Se
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.21-31
    • /
    • 2015
  • The purpose of this study is to understand the characteristics of urban climate in several cities, from observing radiation according to wavelength band(UV, short and long wave radiation). Observation start from 5 May to 31 August 2013. The followings are the main results from this study. 1) In every observation area, greater amounts of short-wave radiation have been recorded in May compared to June. Even though the highest solar elevation occurs in June, May sees clearer days, which has attributed to the outcome. 2) The analysis concerning the correlation between ultraviolet radiation and shortwave radiation have revealed that regions closer to the Daegu area have stronger correspondence. 3) The time series of daily long-wave radiation shares a similar tendency with the time series of air temperature, and the maximum value was recorded at 14:00 and 15:00.

Long and Short Wave Radiation and Correlation Analysis Between Downtown and Suburban Area(II) - Study on Correlation Analysis Method of Radiation Data - (도심부와 교외지역의 장·단파 복사와 상관도 분석 (II) - 관측 자료의 상관도 분석기법에 관한 연구 -)

  • Choi, Dong-Ho;Lee, Bu-Yong;Oh, Ho-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.101-110
    • /
    • 2013
  • The propose of this study is to understand the phenomenon of radiation and comparison of analysis of two methods. One is analysis method of same-time data and the another is analysis method of rank data. We confirmed that two methods of correlation analysis had the effectiveness and suitability. The followings are main results from this study. 1) The seasonal correlation coefficient of long and short-wave radiation is higher in winter than in summer because of high humidity in the summer season can makes easily cloud in the sky locally. 2) According to analysis method, there is big difference in correlation coefficient from 0.494(Analysis method of same-time data) to 0.967(Analysis method of rank data) with short-wave radiation by the location during summer. These results have significant value in solar radiation research and analysis. It has explored a new way for solar radiation research of analysis method as well.