• 제목/요약/키워드: Urban levitation control system

검색결과 5건 처리시간 0.017초

Development of Redundant Levitation and Guidance Control System of the Urban and Medium to High Speed Magnetic Levitation Train

  • Cho, Yeon-Hwa;Lee, Sun-Hee;Jang, Kyung-Hyun;Lee, Sang Suk;Lee, Kyoung-Bok;Park, Doh-Young
    • International Journal of Railway
    • /
    • 제8권1호
    • /
    • pp.21-29
    • /
    • 2015
  • This study focuses on the performance enhancement of the levitation and guidance control system in urban and medium-to high-speed magnetic levitation trains. A levitation control system, which is currently being tested in Yeongjongdo, is a single controller that is neither designed nor produced on the basis of redundancy. Hence, vehicular stability and reliability should be improved for the situation in which levitation failure occurs because of a breakdown in a controller during vehicle operation. In addition, the control system should be developed to control electromagnetic levitation considering changes in normal force according to changes in the driving force of the propulsion system.

초고속 자기부상열차의 부상 및 안내 제어 (Levitation and Guidance Control of Super Speed Maglev Trains)

  • 김창현;이종민;김봉섭;한형석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3079-3085
    • /
    • 2011
  • Through Korean Urban Maglev Program started in 2006, an urban maglev train was developed and the demonstration line is under construction as of now in 2011. The target speed of the developed maglev train is 110km/h, and the core technologies for super speed maglev trains over 500km/h are being studied. The propulsion and levitation systems of the super speed maglev train under consideration consist of linear synchronous motors (LSM) and levitation electromagnets which also act as a mover of LSM. In addition, guidance electromagnets are used to ensure stable running on curved tracks during super speed operation. The levitation and guidance control is focused on in this paper. For experimental purpose, a small maglev train is being manufactured, and its levitation and guidance controller is studied. The main task of the controller is to maintain the gap between the corresponding electromagnet and the guideway constantly. In general, measurements of the gap, acceleration and current and so on are utilized, and the gap control is implemented independently for each electromagnet. In this paper, the levitation and guidance system is modelled considering mechanical interactions, and the levitation and guidance controller is proposed based on this model. The developed controller is verified by various simulations using MATLAB/Simulink.

  • PDF

Design and Control of Levitation and Guidance Systems for a Semi-High-Speed Maglev Train

  • Kim, Min;Jeong, Jae-Hoon;Lim, Jaewon;Kim, Chang-Hyun;Won, Mooncheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.117-125
    • /
    • 2017
  • Research on Maglev (Magnetic Levitation) train is currently being conducted in Korea, concerning Urban Transit (110 km/h of maximum speed), semi-high-speed (200 km/h of maximum speed), and high-speed (550 km/h of maximum speed) trains. This paper presents a research study on the levitation and guidance systems for the Korean semi-high-speed maglev train. A levitation electromagnet was designed, and the need for a separate guidance system was analyzed. A guidance electromagnet to control the lateral displacement of the train and ensure its stable operation was then also designed, and its characteristics were analyzed. The dynamic performance of the designed levitation and guidance electromagnets was modeled and analyzed, using a linearized modeling of the system equations of motion. Lastly, a test setup was prepared, including manufactured prototypes of the designed system, and the validity of the design was verified and examined with performance evaluation tests.

상전도자기부상식 도시형 자기부상열차의 주행성능시험 및 평가(I) (Performance Test and Safety Evaluation of EMS Type Urban Tranit Maglev System(I))

  • 조흥제;김인근;김춘경;유문환;이종민
    • 연구논문집
    • /
    • 통권26호
    • /
    • pp.5-14
    • /
    • 1996
  • Test results of electromagnetic suspension (EMS) type urban transit maglev system are reported. Electromagnetic levitation system is a transportation system taking advantage of the attraction of normal conducting electromagnets to support and guide the train in combination with the linear induction traction motors. Urban Transit Maglev (UTM) Which is being developed by the maglev team in KIMM and the Hyundai Precision Company since 1995 consists of three bogies. In the first year, two types of Bogies are developed. Bogie I uses an analog controller for levitation and guidance control and is driven by two linear induction motors (LIM) mounted on the right and left side of module. Bogie II uses a digital controller and is driven by one LIM mounted along the center line of the bogie. Test results reported in this paper are those obtained with Bogie II with a digital controller. Also included in this paper is a brief explanation of the electromagnetic suspension levitation system which is being developed by the maglev team in KIMM.

  • PDF

가이드웨이 진동 특성이 자기부상열차 동특성에 미치는 영향 (Effects of Guideway's Vibration Characteristics on Dynamics of a Maglev Vehicle)

  • 한형석;임봉혁;이남진;허영철;권정일
    • 한국소음진동공학회논문집
    • /
    • 제18권3호
    • /
    • pp.299-306
    • /
    • 2008
  • The electromagnet in Maglev vehicles controls the voltage in its winding to maintain the air gap, a clearance between the electromagnet and guideway, within an allowable deviation, with strongly interacting with the flexible guideway. Thus, the vibration characteristics of guideway plays important role in dynamics of Maglev vehicles using electromagnet as an active suspension system. The effects of the guideway's vibrational characteristics on dynamics of the Maglev vehicle UTM-01 are analyzed. The coupled equations of motion of the vehicle/guideway with 3 DOFs are derived. Eigenvalues are calculated and frequency response analysis is also performed for a clear understanding of the dynamic characteristics due to guideway vibration characteristics. To verify the results, tests of the urban Mgalev vehicle UTM-02 are carried out. It is recommended that the natural frequency of the guideway be minimized and its damping ratio in the Maglev vehicle with a 5-states feedback control law as a levitation control law.